File size: 4,336 Bytes
3667d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5677c31
3667d90
 
 
41031b1
3667d90
41031b1
 
 
3667d90
 
 
 
 
 
 
659d472
 
6c07c84
5677c31
659d472
3667d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe023be
1668d94
3667d90
e741174
465d3eb
 
fe023be
50c679a
0f6f2b4
 
a82dc98
 
e7baa7c
 
50c679a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7baa7c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import matplotlib.pyplot as plt
import numpy as np
from six import BytesIO
from PIL import Image
import tensorflow as tf
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as viz_utils
from object_detection.utils import ops as utils_op
import tarfile
import wget 
import gradio as gr
from huggingface_hub import snapshot_download
import os 

PATH_TO_LABELS = 'data/label_map.pbtxt'   
category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True)

def pil_image_as_numpy_array(pilimg):

    img_array = tf.keras.utils.img_to_array(pilimg)
    # img_array = np.expand_dims(img_array, axis=0)
    return img_array
    
def load_image_into_numpy_array(path):
                                    
    image = None
    image_data = tf.io.gfile.GFile(path, 'rb').read()
    image = Image.open(BytesIO(image_data))
    return pil_image_as_numpy_array(image)            

def load_model():
    model_dir = 'saved_model'    
    detection_model = tf.saved_model.load(str(model_dir))
    return detection_model    


def predict(image_np):
    
    image_np = pil_image_as_numpy_array(image_np)
    image_np = np.expand_dims(image_np, axis=0)
    
    results = detection_model(image_np)

    # different object detection models have additional results
    result = {key:value.numpy() for key,value in results.items()}
    
    label_id_offset = 0
    image_np_with_detections = image_np.copy()

    viz_utils.visualize_boxes_and_labels_on_image_array(
        image_np_with_detections[0],
        result['detection_boxes'][0],
        (result['detection_classes'][0] + label_id_offset).astype(int),
        result['detection_scores'][0],
        category_index,
        use_normalized_coordinates=True,
        max_boxes_to_draw=200,
        min_score_thresh=.60,
        agnostic_mode=False,
        line_thickness=2)

    result_pil_img = tf.keras.utils.array_to_img(image_np_with_detections[0])
    
    return result_pil_img

    
detection_model = load_model()

# Specify paths to example images
sample_images = [["test_1.jpg"],["test_9.jpg"],["test_6.jpg"],["test_7.jpg"],
                 ["test_10.jpg"], ["test_11.jpg"],["test_8.jpg"]]

tab1 = gr.Interface(fn=predict,
                     inputs=gr.Image(label='Upload an expressway image', type="pil"),
                     outputs=gr.Image(type="pil"),
                     title='Blue and Yellow Taxi detection in live expressway traffic conditions (data.gov.sg)',
                     examples = sample_images
                    )

def predict_on_video(video_in_filepath, video_out_filepath, detection_model, category_index):
    video_reader = cv2.VideoCapture(video_in_filepath)
    
    frame_h = int(video_reader.get(cv2.CAP_PROP_FRAME_HEIGHT))
    frame_w = int(video_reader.get(cv2.CAP_PROP_FRAME_WIDTH))
    fps = video_reader.get(cv2.CAP_PROP_FPS)

    video_writer = cv2.VideoWriter(
        video_out_filepath,
        cv2.VideoWriter_fourcc(*'mp4v'),
        fps,
        (frame_w, frame_h)
    )

    label_id_offset = 0

    while True:
        ret, frame = video_reader.read()

        if not ret:
            break  # Break the loop if the video is finished

        processed_frame = predict(frame, detection_model, category_index, label_id_offset)

        # Convert processed frame to numpy array
        processed_frame_np = np.array(processed_frame)

        # Write the frame to the output video
        video_writer.write(processed_frame_np)

    # Release video reader and writer
    video_reader.release()
    video_writer.release()
    cv2.destroyAllWindows()
    cv2.waitKey(1)

# Function to process a video
def process_video(video_path):
    output_path = "output_video.mp4"  # Output path for the processed video
    # Assuming you have detection_model and category_index defined
    predict_on_video(video_path, output_path, detection_model, category_index)
    return output_path

# Create the video processing interface
tab2 = gr.Interface(
    fn=process_video,
    inputs=gr.File(label="Upload a video", type="video", accept=".mp4"),
    outputs=gr.File(type="video/mp4"),
    title='Video Processing',
    examples=["example_video.mp4"]
)

# Create a Tabbed Interface
iface = gr.Tabbed(tab1, tab2)

# Launch the interface
iface.launch(share=True)