Spaces:
Runtime error
Runtime error
File size: 7,303 Bytes
5b9bbe2 c122ae9 5b9bbe2 c122ae9 5b9bbe2 cdc7dcc 5b9bbe2 cdc7dcc 5b9bbe2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import os
import tyro
import glob
import imageio
import numpy as np
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision.transforms.functional as TF
from safetensors.torch import load_file
import kiui
from kiui.op import recenter
from kiui.cam import orbit_camera
from core.options import AllConfigs, Options
from core.models import LGM
from mvdream.pipeline_mvdream import MVDreamPipeline
import cv2
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
# opt = tyro.cli(AllConfigs)
# # model
# model = LGM(opt)
# # resume pretrained checkpoint
# if opt.resume is not None:
# if opt.resume.endswith('safetensors'):
# ckpt = load_file(opt.resume, device='cpu')
# else:
# ckpt = torch.load(opt.resume, map_location='cpu')
# model.load_state_dict(ckpt, strict=False)
# print(f'[INFO] Loaded checkpoint from {opt.resume}')
# else:
# print(f'[WARN] model randomly initialized, are you sure?')
# # device
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = model.half().to(device)
# model.eval()
# process function
def process(opt: Options, path, pipe, model, rays_embeddings, seed):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
tan_half_fov = np.tan(0.5 * np.deg2rad(opt.fovy))
proj_matrix = torch.zeros(4, 4, dtype=torch.float32, device=device)
proj_matrix[0, 0] = 1 / tan_half_fov
proj_matrix[1, 1] = 1 / tan_half_fov
proj_matrix[2, 2] = (opt.zfar + opt.znear) / (opt.zfar - opt.znear)
proj_matrix[3, 2] = - (opt.zfar * opt.znear) / (opt.zfar - opt.znear)
proj_matrix[2, 3] = 1
name = os.path.splitext(os.path.basename(path))[0]
print(f'[INFO] Processing {path} --> {name}')
os.makedirs('vis_data', exist_ok=True)
os.makedirs('logs', exist_ok=True)
image = kiui.read_image(path, mode='uint8')
# generate mv
image = image.astype(np.float32) / 255.0
# rgba to rgb white bg
if image.shape[-1] == 4:
image = image[..., :3] * image[..., 3:4] + (1 - image[..., 3:4])
generator = torch.manual_seed(seed)
mv_image = pipe('', image, guidance_scale=5.0, num_inference_steps=30, elevation=0, generator=generator)
mv_image = np.stack([mv_image[1], mv_image[2], mv_image[3], mv_image[0]], axis=0) # [4, 256, 256, 3], float32
# generate gaussians
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
with torch.inference_mode():
############## align azimuth #####################
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians = model.forward_gaussians(input_image)
best_azi = 0
best_diff = 1e8
for v, azi in enumerate(np.arange(-180, 180, 1)):
cam_poses = torch.from_numpy(orbit_camera(0, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
# scale = min(azi / 360, 1)
scale = 1
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)
rendered_image = result['image']
rendered_image = rendered_image.squeeze(1).permute(0,2,3,1).squeeze(0).contiguous().float().cpu().numpy()
rendered_image = cv2.resize(rendered_image, (image.shape[0], image.shape[1]), interpolation=cv2.INTER_AREA)
diff = np.mean((rendered_image- image) ** 2)
if diff < best_diff:
best_diff = diff
best_azi = azi
print("Best aligned azimuth: ", best_azi)
mv_image = []
for v, azi in enumerate([0, 90, 180, 270]):
cam_poses = torch.from_numpy(orbit_camera(0, azi + best_azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
# scale = min(azi / 360, 1)
scale = 1
result = model.gs.render(gaussians, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=scale)
rendered_image = result['image']
rendered_image = rendered_image.squeeze(1)
rendered_image = F.interpolate(rendered_image, (256, 256))
rendered_image = rendered_image.permute(0,2,3,1).contiguous().float().cpu().numpy()
mv_image.append(rendered_image)
mv_image = np.concatenate(mv_image, axis=0)
input_image = torch.from_numpy(mv_image).permute(0, 3, 1, 2).float().to(device) # [4, 3, 256, 256]
input_image = F.interpolate(input_image, size=(opt.input_size, opt.input_size), mode='bilinear', align_corners=False)
input_image = TF.normalize(input_image, IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD)
input_image = torch.cat([input_image, rays_embeddings], dim=1).unsqueeze(0) # [1, 4, 9, H, W]
################################
with torch.autocast(device_type='cuda', dtype=torch.float16):
# generate gaussians
gaussians, gaussians_orig_res = model.forward_gaussians_downsample(input_image)
# save gaussians
model.gs.save_ply(gaussians, os.path.join('logs', name + '_model.ply'))
# render 360 video
images = []
elevation = 0
azimuth = np.arange(0, 360, 2, dtype=np.int32)
for azi in tqdm.tqdm(azimuth):
cam_poses = torch.from_numpy(orbit_camera(elevation, azi, radius=opt.cam_radius, opengl=True)).unsqueeze(0).to(device)
cam_poses[:, :3, 1:3] *= -1 # invert up & forward direction
# cameras needed by gaussian rasterizer
cam_view = torch.inverse(cam_poses).transpose(1, 2) # [V, 4, 4]
cam_view_proj = cam_view @ proj_matrix # [V, 4, 4]
cam_pos = - cam_poses[:, :3, 3] # [V, 3]
image = model.gs.render(gaussians_orig_res, cam_view.unsqueeze(0), cam_view_proj.unsqueeze(0), cam_pos.unsqueeze(0), scale_modifier=1)['image']
images.append((image.squeeze(1).permute(0,2,3,1).contiguous().float().cpu().numpy() * 255).astype(np.uint8))
images = np.concatenate(images, axis=0)
imageio.mimwrite(os.path.join('vis_data', name + '_static.mp4'), images, fps=30) |