Spaces:
Runtime error
Runtime error
File size: 13,511 Bytes
8acb22e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import os
import time
import gradio as gr
import ujson as json
import traceback
from typing import List
from tqdm import tqdm
from src.auctioneer_base import Auctioneer
from src.bidder_base import Bidder, bidders_to_chatbots, bidding_multithread
from utils import trace_back
LOG_DIR = 'logs'
enable_gr = gr.update(interactive=True)
disable_gr = gr.update(interactive=False)
def monitor_all(bidder_list: List[Bidder]):
return sum([bidder.to_monitors() for bidder in bidder_list], [])
def parse_bid_price(auctioneer: Auctioneer, bidder: Bidder, msg: str):
# rebid if the message is not parsible into a bid price
bid_price = auctioneer.parse_bid(msg)
while bid_price is None:
re_msg = bidder.bid("You must be clear about your bidding decision, say either \"I'm out!\" or \"I bid $xxx!\". Please rebid.")
bid_price = auctioneer.parse_bid(re_msg)
print(f"{bidder.name} rebid: {re_msg}")
return bid_price
def enable_human_box(bidder_list):
signals = []
for bidder in bidder_list:
if 'human' in bidder.model_name and not bidder.withdraw:
signals.append(gr.update(interactive=True, visible=True,
placeholder="Please bid! Enter \"I'm out\" or \"I bid $xxx\"."))
else:
signals.append(disable_gr)
return signals
def disable_all_box(bidder_list):
signals = []
for bidder in bidder_list:
if 'human' in bidder.model_name:
signals.append(gr.update(interactive=False, visible=True,
placeholder="Wait a moment to engage in the auction."))
else:
signals.append(gr.update(interactive=False, visible=False))
return signals
def run_auction(
auction_hash: str,
auctioneer: Auctioneer,
bidder_list: List[Bidder],
thread_num: int,
yield_for_demo=True,
log_dir=LOG_DIR,
repeat_num=0,
memo_file=None):
# bidder_list[0].verbose=True
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
# ***************** Learn Round ****************
for bidder in bidder_list:
if bidder.enable_learning and memo_file:
# if no prev memo file, then no need to learn.
if os.path.exists(memo_file):
with open(memo_file) as f:
data = json.load(f)
past_learnings = data['learnings'][bidder.name]
past_auction_log = data['auction_log']
bidder.learn_from_prev_auction(past_learnings, past_auction_log)
# ***************** Plan Round *****************
# init bidder profit
bidder_profit_info = auctioneer.gather_all_status(bidder_list)
for bidder in bidder_list:
bidder.set_all_bidders_status(bidder_profit_info)
plan_instructs = [bidder.get_plan_instruct(auctioneer.items) for bidder in bidder_list]
bidding_multithread(bidder_list, plan_instructs, func_type='plan', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
bar = tqdm(total=len(auctioneer.items_queue), desc='Auction Progress')
while not auctioneer.end_auction():
cur_item = auctioneer.present_item()
bid_round = 0
while True:
# ***************** Bid Round *****************
auctioneer_msg = auctioneer.ask_for_bid(bid_round)
_bidder_list = []
_bid_instruct_list = []
# remove highest bidder and withdrawn bidders
for bidder in bidder_list:
if bidder is auctioneer.highest_bidder or bidder.withdraw:
bidder.need_input = False
continue
else:
bidder.need_input = True # enable input from demo
instruct = bidder.get_bid_instruct(auctioneer_msg, bid_round)
_bidder_list.append(bidder)
_bid_instruct_list.append(instruct)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + enable_human_box(bidder_list)
_msgs = bidding_multithread(_bidder_list, _bid_instruct_list, func_type='bid', thread_num=thread_num)
for i, (msg, bidder) in enumerate(zip(_msgs, _bidder_list)):
if bidder.model_name == 'rule':
bid_price = bidder.bid_rule(auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
else:
bid_price = parse_bid_price(auctioneer, bidder, msg)
# can't bid more than budget or less than previous highest bid
while True:
fail_msg = bidder.bid_sanity_check(bid_price, auctioneer.prev_round_max_bid, auctioneer.min_markup_pct)
if fail_msg is None:
break
else:
bidder.need_input = True # enable input from demo
auctioneer_msg = auctioneer.ask_for_rebid(fail_msg=fail_msg, bid_price=bid_price)
rebid_instruct = bidder.get_rebid_instruct(auctioneer_msg)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
msg = bidder.rebid_for_failure(rebid_instruct)
bid_price = parse_bid_price(auctioneer, bidder, msg)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
bidder.set_withdraw(bid_price)
auctioneer.record_bid({'bidder': bidder, 'bid': bid_price, 'raw_msg': msg}, bid_round)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
is_sold = auctioneer.check_hammer(bid_round)
bid_round += 1
if is_sold:
break
else:
if auctioneer.fail_to_sell and auctioneer.enable_discount:
for bidder in bidder_list:
bidder.set_withdraw(0) # back in the game
# ***************** Summarize *****************
summarize_instruct_list = []
for bidder in bidder_list:
if bidder is auctioneer.highest_bidder:
win_lose_msg = bidder.win_bid(cur_item, auctioneer.highest_bid)
else:
win_lose_msg = bidder.lose_bid(cur_item)
msg = bidder.get_summarize_instruct(
bidding_history=auctioneer.all_bidding_history_to_string(),
hammer_msg=auctioneer.get_hammer_msg(),
win_lose_msg=win_lose_msg
)
summarize_instruct_list.append(msg)
# record profit information of all bidders for each bidder
# (not used in the auction, just for belief tracking evaluation)
bidder_profit_info = auctioneer.gather_all_status(bidder_list)
for bidder in bidder_list:
bidder.set_all_bidders_status(bidder_profit_info)
bidding_multithread(bidder_list, summarize_instruct_list, func_type='summarize', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
# ***************** Replan *****************
if len(auctioneer.items_queue) > 0: # no need to replan if all items are sold
replan_instruct_list = [bidder.get_replan_instruct(
# bidding_history=auctioneer.all_bidding_history_to_string(),
# hammer_msg=auctioneer.get_hammer_msg()
) for bidder in bidder_list]
bidding_multithread(bidder_list, replan_instruct_list, func_type='replan', thread_num=thread_num)
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log()] + [disable_gr, disable_gr] + disable_all_box(bidder_list)
auctioneer.hammer_fall()
bar.update(1)
total_cost = sum([b.openai_cost for b in bidder_list]) + auctioneer.openai_cost
bidder_reports = [bidder.profit_report() for bidder in bidder_list]
if yield_for_demo:
chatbot_list = bidders_to_chatbots(bidder_list, profit_report=True)
yield [bidder_list] + chatbot_list + monitor_all(bidder_list) + [auctioneer.log(bidder_reports) + f'\n## Total Cost: ${total_cost}'] + [disable_gr, enable_gr] + disable_all_box(bidder_list)
memo = {'auction_log': auctioneer.log(show_model_name=False),
'memo_text': bidder_reports,
'profit': {bidder.name: bidder.profit for bidder in bidder_list},
'total_cost': total_cost,
'learnings': {bidder.name: bidder.learnings for bidder in bidder_list},
'model_info': {bidder.name: bidder.model_name for bidder in bidder_list}}
log_bidders(log_dir, auction_hash, bidder_list, repeat_num, memo)
auctioneer.finish_auction()
if not yield_for_demo:
yield total_cost
def log_bidders(log_dir: str, auction_hash: str, bidder_list: List[Bidder], repeat_num: int, memo: dict):
for bidder in bidder_list:
log_file = f"{log_dir}/{auction_hash}/{bidder.name.replace(' ', '')}-{repeat_num}.jsonl"
if not os.path.exists(log_file):
os.makedirs(os.path.dirname(log_file), exist_ok=True)
with open(log_file, 'a') as f:
log_data = bidder.to_monitors(as_json=True)
f.write(json.dumps(log_data) + '\n')
with open(f"{log_dir}/{auction_hash}/memo-{repeat_num}.json", 'w') as f:
f.write(json.dumps(memo) + '\n')
def make_auction_hash():
return str(int(time.time()))
if __name__ == '__main__':
import argparse
from src.item_base import create_items
from src.bidder_base import create_bidders
from transformers import GPT2TokenizerFast
import cjjpy as cjj
parser = argparse.ArgumentParser()
parser.add_argument('--input_dir', '-i', type=str, default='data/exp_base/')
parser.add_argument('--shuffle', action='store_true')
parser.add_argument('--repeat', type=int, default=1)
parser.add_argument('--threads', '-t', type=int, help='Number of threads. Max is number of bidders. Reduce it if rate limit is low (e.g., GPT-4).', required=True)
parser.add_argument('--memo_file', '-m', type=str, help='The last memo.json file to be loaded for learning. Only useful when the repeated auctions are interrupted (i.e., auction hash is different).')
args = parser.parse_args()
auction_hash = make_auction_hash()
total_money_spent = 0
for i in tqdm(range(args.repeat), desc='Repeat'):
cnt = 3
while cnt > 0:
try:
item_file = os.path.join(args.input_dir, f'items_demo.jsonl')
bidder_file = os.path.join(args.input_dir, f'bidders_demo.jsonl')
memo_file = args.memo_file if args.memo_file else f'{args.input_dir}/{auction_hash}/memo-{i-1}.json' # past memo for learning
items = create_items(item_file)
bidders = create_bidders(bidder_file, auction_hash=auction_hash)
auctioneer = Auctioneer(enable_discount=False)
auctioneer.init_items(items)
if args.shuffle:
auctioneer.shuffle_items()
money_spent = list(run_auction(
auction_hash,
auctioneer,
bidders,
thread_num=min(args.threads, len(bidders)),
yield_for_demo=False,
log_dir=args.input_dir,
repeat_num=i,
memo_file=memo_file,
))
total_money_spent += sum(money_spent)
break
except Exception as e:
cnt -= 1
print(f"Error in {i}th auction: {e}\n{trace_back(e)}")
print(f"Retry {cnt} more times...")
print('Total money spent: $', total_money_spent)
cjj.SendEmail(f'Completed: {args.input_dir} - {auction_hash}', f'Total money spent: ${total_money_spent}') |