File size: 5,859 Bytes
2777fde |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
""" Utility file for trainers """
import os
import shutil
from glob import glob
import torch
import torch.distributed as dist
''' checkpoint functions '''
# saves checkpoint
def save_checkpoint(model, \
optimizer, \
scheduler, \
epoch, \
checkpoint_dir, \
name, \
model_name):
os.makedirs(checkpoint_dir, exist_ok=True)
checkpoint_state = {
"model": model.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"epoch": epoch
}
checkpoint_path = os.path.join(checkpoint_dir,'{}_{}_{}.pt'.format(name, model_name, epoch))
torch.save(checkpoint_state, checkpoint_path)
print("Saved checkpoint: {}".format(checkpoint_path))
# reload model weights from checkpoint file
def reload_ckpt(args, \
network, \
optimizer, \
scheduler, \
gpu, \
model_name, \
manual_reload_name=None, \
manual_reload=False, \
manual_reload_dir=None, \
epoch=None, \
fit_sefa=False):
if manual_reload:
reload_name = manual_reload_name
else:
reload_name = args.name
if manual_reload_dir:
ckpt_dir = manual_reload_dir + reload_name + "/ckpt/"
else:
ckpt_dir = args.output_dir + reload_name + "/ckpt/"
temp_ckpt_dir = f'{args.output_dir}{reload_name}/ckpt_temp/'
reload_epoch = epoch
# find best or latest epoch
if epoch==None:
reload_epoch_temp = 0
reload_epoch_ckpt = 0
if len(os.listdir(temp_ckpt_dir))!=0:
reload_epoch_temp = find_best_epoch(temp_ckpt_dir)
if len(os.listdir(ckpt_dir))!=0:
reload_epoch_ckpt = find_best_epoch(ckpt_dir)
if reload_epoch_ckpt >= reload_epoch_temp:
reload_epoch = reload_epoch_ckpt
else:
reload_epoch = reload_epoch_temp
ckpt_dir = temp_ckpt_dir
else:
if os.path.isfile(f"{temp_ckpt_dir}{reload_epoch}/{reload_name}_{model_name}_{reload_epoch}.pt"):
ckpt_dir = temp_ckpt_dir
# reloading weight
if model_name==None:
resuming_path = f"{ckpt_dir}{reload_epoch}/{reload_name}_{reload_epoch}.pt"
else:
resuming_path = f"{ckpt_dir}{reload_epoch}/{reload_name}_{model_name}_{reload_epoch}.pt"
if gpu==0:
print("===Resume checkpoint from: {}===".format(resuming_path))
loc = 'cuda:{}'.format(gpu)
checkpoint = torch.load(resuming_path, map_location=loc)
start_epoch = 0 if manual_reload and not fit_sefa else checkpoint["epoch"]
if manual_reload_dir is not None and 'parameter_estimation' in manual_reload_dir:
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in checkpoint["model"].items():
name = 'module.' + k # add `module.`
new_state_dict[name] = v
network.load_state_dict(new_state_dict)
else:
network.load_state_dict(checkpoint["model"])
if not manual_reload:
optimizer.load_state_dict(checkpoint["optimizer"])
scheduler.load_state_dict(checkpoint["scheduler"])
if gpu==0:
# print("=> loaded checkpoint '{}' (epoch {})".format(resuming_path, checkpoint['epoch']))
print("=> loaded checkpoint '{}' (epoch {})".format(resuming_path, epoch))
return start_epoch
# find best epoch for reloading current model
def find_best_epoch(input_dir):
cur_epochs = glob("{}*".format(input_dir))
return find_by_name(cur_epochs)
# sort string epoch names by integers
def find_by_name(epochs):
int_epochs = []
for e in epochs:
int_epochs.append(int(os.path.basename(e)))
int_epochs.sort()
return (int_epochs[-1])
# remove ckpt files
def remove_ckpt(cur_ckpt_path_dir, leave=2):
ckpt_nums = [int(i) for i in os.listdir(cur_ckpt_path_dir)]
ckpt_nums.sort()
del_num = len(ckpt_nums) - leave
cur_del_num = 0
while del_num > 0:
shutil.rmtree("{}{}".format(cur_ckpt_path_dir, ckpt_nums[cur_del_num]))
del_num -= 1
cur_del_num += 1
''' multi-GPU functions '''
# gather function implemented from DirectCLR
class GatherLayer_Direct(torch.autograd.Function):
"""
Gather tensors from all workers with support for backward propagation:
This implementation does not cut the gradients as torch.distributed.all_gather does.
"""
@staticmethod
def forward(ctx, x):
output = [torch.zeros_like(x) for _ in range(dist.get_world_size())]
dist.all_gather(output, x)
return tuple(output)
@staticmethod
def backward(ctx, *grads):
all_gradients = torch.stack(grads)
dist.all_reduce(all_gradients)
return all_gradients[dist.get_rank()]
from classy_vision.generic.distributed_util import (
convert_to_distributed_tensor,
convert_to_normal_tensor,
is_distributed_training_run,
)
def gather_from_all(tensor: torch.Tensor) -> torch.Tensor:
"""
Similar to classy_vision.generic.distributed_util.gather_from_all
except that it does not cut the gradients
"""
if tensor.ndim == 0:
# 0 dim tensors cannot be gathered. so unsqueeze
tensor = tensor.unsqueeze(0)
if is_distributed_training_run():
tensor, orig_device = convert_to_distributed_tensor(tensor)
gathered_tensors = GatherLayer_Direct.apply(tensor)
gathered_tensors = [
convert_to_normal_tensor(_tensor, orig_device)
for _tensor in gathered_tensors
]
else:
gathered_tensors = [tensor]
gathered_tensor = torch.cat(gathered_tensors, 0)
return gathered_tensor
|