File size: 10,693 Bytes
2777fde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
"""
    Implementation of objective functions used in the task 'End-to-end Remastering System'
"""
import numpy as np
import torch
import torch.nn.functional as F
import torch.nn as nn

import os
import sys
currentdir = os.path.dirname(os.path.realpath(__file__))
sys.path.append(os.path.dirname(currentdir))

from modules.training_utils import *
from modules.front_back_end import *



'''
    Normalized Temperature-scaled Cross Entropy (NT-Xent) Loss
    below source code (class NT_Xent) is a replication from the github repository - https://github.com/Spijkervet/SimCLR
    the original implementation can be found here: https://github.com/Spijkervet/SimCLR/blob/master/simclr/modules/nt_xent.py
'''
class NT_Xent(nn.Module):
    def __init__(self, batch_size, temperature, world_size):
        super(NT_Xent, self).__init__()
        self.batch_size = batch_size
        self.temperature = temperature
        self.world_size = world_size

        self.mask = self.mask_correlated_samples(batch_size, world_size)
        self.criterion = nn.CrossEntropyLoss(reduction="sum")
        self.similarity_f = nn.CosineSimilarity(dim=2)

    def mask_correlated_samples(self, batch_size, world_size):
        N = 2 * batch_size * world_size
        mask = torch.ones((N, N), dtype=bool)
        mask = mask.fill_diagonal_(0)
        for i in range(batch_size * world_size):
            mask[i, batch_size + i] = 0
            mask[batch_size + i, i] = 0
            # mask[i, batch_size * world_size + i] = 0
            # mask[batch_size * world_size + i, i] = 0
        return mask

    def forward(self, z_i, z_j):
        """
        We do not sample negative examples explicitly.
        Instead, given a positive pair, similar to (Chen et al., 2017), we treat the other 2(N − 1) augmented examples within a minibatch as negative examples.
        """
        N = 2 * self.batch_size * self.world_size

        z = torch.cat((z_i, z_j), dim=0)
        # combine embeddings from all GPUs
        if self.world_size > 1:
            z = torch.cat(GatherLayer.apply(z), dim=0)

        sim = self.similarity_f(z.unsqueeze(1), z.unsqueeze(0)) / self.temperature

        sim_i_j = torch.diag(sim, self.batch_size * self.world_size)
        sim_j_i = torch.diag(sim, -self.batch_size * self.world_size)

        # We have 2N samples, but with Distributed training every GPU gets N examples too, resulting in: 2xNxN
        positive_samples = torch.cat((sim_i_j, sim_j_i), dim=0).reshape(N, 1)
        negative_samples = sim[self.mask].reshape(N, -1)

        labels = torch.zeros(N).to(positive_samples.device).long()
        logits = torch.cat((positive_samples, negative_samples), dim=1)
        loss = self.criterion(logits, labels)
        loss /= N
        return loss



# Root Mean Squared Loss
#   penalizes the volume factor with non-linearlity
class RMSLoss(nn.Module):
    def __init__(self, reduce, loss_type="l2"):
        super(RMSLoss, self).__init__()
        self.weight_factor = 100.
        if loss_type=="l2":
            self.loss = nn.MSELoss(reduce=None)


    def forward(self, est_targets, targets):
        est_targets = est_targets.reshape(est_targets.shape[0]*est_targets.shape[1], est_targets.shape[2])
        targets = targets.reshape(targets.shape[0]*targets.shape[1], targets.shape[2])
        normalized_est = torch.sqrt(torch.mean(est_targets**2, dim=-1))
        normalized_tgt = torch.sqrt(torch.mean(targets**2, dim=-1))

        weight = torch.clamp(torch.abs(normalized_tgt-normalized_est), min=1/self.weight_factor) * self.weight_factor

        return torch.mean(weight**1.5 * self.loss(normalized_est, normalized_tgt))



# Multi-Scale Spectral Loss proposed at the paper "DDSP: DIFFERENTIABLE DIGITAL SIGNAL PROCESSING" (https://arxiv.org/abs/2001.04643)
#   we extend this loss by applying it to mid/side channels
class MultiScale_Spectral_Loss_MidSide_DDSP(nn.Module):
    def __init__(self, mode='midside', \
                        reduce=True, \
                        n_filters=None, \
                        windows_size=None, \
                        hops_size=None, \
                        window="hann", \
                        eps=1e-7, \
                        device=torch.device("cpu")):
        super(MultiScale_Spectral_Loss_MidSide_DDSP, self).__init__()
        self.mode = mode
        self.eps = eps
        self.mid_weight = 0.5   # value in the range of 0.0 ~ 1.0
        self.logmag_weight = 0.1

        if n_filters is None:
            n_filters = [4096, 2048, 1024, 512]
            # n_filters = [4096]
        if windows_size is None:
            windows_size = [4096, 2048, 1024, 512]
            # windows_size = [4096]
        if hops_size is None:
            hops_size = [1024, 512, 256, 128]
            # hops_size = [1024]

        self.multiscales = []
        for i in range(len(windows_size)):
            cur_scale = {'window_size' : float(windows_size[i])}
            if self.mode=='midside':
                cur_scale['front_end'] = FrontEnd(channel='mono', \
                                                    n_fft=n_filters[i], \
                                                    hop_length=hops_size[i], \
                                                    win_length=windows_size[i], \
                                                    window=window, \
                                                    device=device)
            elif self.mode=='ori':
                cur_scale['front_end'] = FrontEnd(channel='stereo', \
                                                    n_fft=n_filters[i], \
                                                    hop_length=hops_size[i], \
                                                    win_length=windows_size[i], \
                                                    window=window, \
                                                    device=device)
            self.multiscales.append(cur_scale)

        self.objective_l1 = nn.L1Loss(reduce=reduce)
        self.objective_l2 = nn.MSELoss(reduce=reduce)


    def forward(self, est_targets, targets):
        if self.mode=='midside':
            return self.forward_midside(est_targets, targets)
        elif self.mode=='ori':
            return self.forward_ori(est_targets, targets)


    def forward_ori(self, est_targets, targets):
        total_loss = 0.0
        total_mag_loss = 0.0
        total_logmag_loss = 0.0
        for cur_scale in self.multiscales:
            est_mag = cur_scale['front_end'](est_targets, mode=["mag"])
            tgt_mag = cur_scale['front_end'](targets, mode=["mag"])

            mag_loss = self.magnitude_loss(est_mag, tgt_mag)
            logmag_loss = self.log_magnitude_loss(est_mag, tgt_mag)
            # cur_loss = mag_loss + logmag_loss
            # total_loss += cur_loss
            total_mag_loss += mag_loss
            total_logmag_loss += logmag_loss
        # return total_loss
        # print(f"ori - mag : {total_mag_loss}\tlog mag : {total_logmag_loss}")
        return (1-self.logmag_weight)*total_mag_loss + \
                (self.logmag_weight)*total_logmag_loss


    def forward_midside(self, est_targets, targets):
        est_mid, est_side = self.to_mid_side(est_targets)
        tgt_mid, tgt_side = self.to_mid_side(targets)
        total_loss = 0.0
        total_mag_loss = 0.0
        total_logmag_loss = 0.0
        for cur_scale in self.multiscales:
            est_mid_mag = cur_scale['front_end'](est_mid, mode=["mag"])
            est_side_mag = cur_scale['front_end'](est_side, mode=["mag"])
            tgt_mid_mag = cur_scale['front_end'](tgt_mid, mode=["mag"])
            tgt_side_mag = cur_scale['front_end'](tgt_side, mode=["mag"])

            mag_loss = self.mid_weight*self.magnitude_loss(est_mid_mag, tgt_mid_mag) + \
                        (1-self.mid_weight)*self.magnitude_loss(est_side_mag, tgt_side_mag)
            logmag_loss = self.mid_weight*self.log_magnitude_loss(est_mid_mag, tgt_mid_mag) + \
                        (1-self.mid_weight)*self.log_magnitude_loss(est_side_mag, tgt_side_mag)
            # cur_loss = mag_loss + logmag_loss
            # total_loss += cur_loss
            total_mag_loss += mag_loss
            total_logmag_loss += logmag_loss
        # return total_loss
        # print(f"midside - mag : {total_mag_loss}\tlog mag : {total_logmag_loss}")
        return (1-self.logmag_weight)*total_mag_loss + \
                (self.logmag_weight)*total_logmag_loss


    def to_mid_side(self, stereo_in):
        mid = stereo_in[:,0] + stereo_in[:,1]
        side = stereo_in[:,0] - stereo_in[:,1]
        return mid, side


    def magnitude_loss(self, est_mag_spec, tgt_mag_spec):
        return torch.norm(self.objective_l1(est_mag_spec, tgt_mag_spec))


    def log_magnitude_loss(self, est_mag_spec, tgt_mag_spec):
        est_log_mag_spec = torch.log10(est_mag_spec+self.eps)
        tgt_log_mag_spec = torch.log10(tgt_mag_spec+self.eps)
        return self.objective_l2(est_log_mag_spec, tgt_log_mag_spec)



# hinge loss for discriminator
def dis_hinge(dis_fake, dis_real):
    return torch.mean(torch.relu(1. - dis_real)) + torch.mean(torch.relu(1. + dis_fake))


# hinge loss for generator
def gen_hinge(dis_fake, dis_real=None):
    return -torch.mean(dis_fake)


# DirectCLR's implementation of infoNCE loss
def infoNCE(nn, p, temperature=0.1):
    nn = torch.nn.functional.normalize(nn, dim=1)
    p = torch.nn.functional.normalize(p, dim=1)
    nn = gather_from_all(nn)
    p = gather_from_all(p)
    logits = nn @ p.T
    logits /= temperature
    n = p.shape[0]
    labels = torch.arange(0, n, dtype=torch.long).cuda()
    loss = torch.nn.functional.cross_entropy(logits, labels)
    return loss




# Class of available loss functions
class Loss:
    def __init__(self, args, reduce=True):
        device = torch.device("cpu")
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{args.gpu}")
        self.l1 = nn.L1Loss(reduce=reduce)
        self.mse = nn.MSELoss(reduce=reduce)
        self.ce = nn.CrossEntropyLoss()
        self.triplet = nn.TripletMarginLoss(margin=1., p=2)

        # self.ntxent = NT_Xent(args.train_batch*2, args.temperature, world_size=len(args.using_gpu.split(",")))
        self.ntxent = NT_Xent(args.batch_size_total*(args.num_strong_negatives+1), args.temperature, world_size=1)
        self.multi_scale_spectral_midside = MultiScale_Spectral_Loss_MidSide_DDSP(mode='midside', eps=args.eps, device=device)
        self.multi_scale_spectral_ori = MultiScale_Spectral_Loss_MidSide_DDSP(mode='ori', eps=args.eps, device=device)
        self.gain = RMSLoss(reduce=reduce)
        self.infonce = infoNCE