File size: 12,401 Bytes
6fc042a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
""" Front-end: processing raw data input """
import torch
import torch.nn as nn
import torchaudio.functional as ta_F
import torchaudio



class FrontEnd(nn.Module):
    def __init__(self, channel='stereo', \
                        n_fft=2048, \
                        n_mels=128, \
                        sample_rate=44100, \
                        hop_length=None, \
                        win_length=None, \
                        window="hann", \
                        eps=1e-7, \
                        device=torch.device("cpu")):
        super(FrontEnd, self).__init__()
        self.channel = channel
        self.n_fft = n_fft
        self.n_mels = n_mels
        self.sample_rate = sample_rate
        self.hop_length = n_fft//4 if hop_length==None else hop_length
        self.win_length = n_fft if win_length==None else win_length
        self.eps = eps
        if window=="hann":
            self.window = torch.hann_window(window_length=self.win_length, periodic=True).to(device)
        elif window=="hamming":
            self.window = torch.hamming_window(window_length=self.win_length, periodic=True).to(device)
        self.melscale_transform = torchaudio.transforms.MelScale(n_mels=self.n_mels, \
                                                                    sample_rate=self.sample_rate, \
                                                                    n_stft=self.n_fft//2+1).to(device)


    def forward(self, input, mode):
        # front-end function which channel-wise combines all demanded features
        # input shape : batch x channel x raw waveform
        # output shape : batch x channel x frequency x time
        phase_output = None

        front_output_list = []
        for cur_mode in mode:
            # Real & Imaginary
            if cur_mode=="cplx":
                if self.channel=="mono":
                    output = torch.stft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
                elif self.channel=="stereo":
                    output_l = torch.stft(input[:,0], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
                    output_r = torch.stft(input[:,1], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
                    output = torch.cat((output_l, output_r), axis=-1)
                if input.shape[-1] % round(self.n_fft/4) == 0:
                    output = output[:, :, :-1]
                if self.n_fft % 2 == 0:
                    output = output[:, :-1]
                front_output_list.append(output.permute(0, 3, 1, 2))
            # Magnitude & Phase or Mel
            elif "mag" in cur_mode or "mel" in cur_mode:
                if self.channel=="mono":
                    cur_cplx = torch.stft(input, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
                    output = self.mag(cur_cplx).unsqueeze(-1)[..., 0:1]
                    if "mag_phase" in cur_mode:
                        phase = self.phase(cur_cplx)
                    if "mel" in cur_mode:
                        output = self.melscale_transform(output.squeeze(-1)).unsqueeze(-1)
                elif self.channel=="stereo":
                    cplx_l = torch.stft(input[:,0], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
                    cplx_r = torch.stft(input[:,1], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window, return_complex=True)
                    mag_l = self.mag(cplx_l).unsqueeze(-1)
                    mag_r = self.mag(cplx_r).unsqueeze(-1)
                    output = torch.cat((mag_l, mag_r), axis=-1)
                    if "mag_phase" in cur_mode:
                        phase_l = self.phase(cplx_l).unsqueeze(-1)
                        phase_r = self.phase(cplx_r).unsqueeze(-1)
                        output = torch.cat((mag_l, phase_l, mag_r, phase_r), axis=-1)
                    if "mel" in cur_mode:
                        output = torch.cat((self.melscale_transform(mag_l.squeeze(-1)).unsqueeze(-1), self.melscale_transform(mag_r.squeeze(-1)).unsqueeze(-1)), axis=-1)

                if "log" in cur_mode:
                    output = torch.log(output+self.eps)

                if input.shape[-1] % round(self.n_fft/4) == 0:
                    output = output[:, :, :-1]
                if cur_mode!="mel" and self.n_fft % 2 == 0: # discard highest frequency
                    output = output[:, 1:]
                front_output_list.append(output.permute(0, 3, 1, 2))

        # combine all demanded features
        if not front_output_list:
            raise NameError("NameError at FrontEnd: check using features for front-end")
        elif len(mode)!=1:
            for i, cur_output in enumerate(front_output_list):
                if i==0:
                    front_output = cur_output
                else:
                    front_output = torch.cat((front_output, cur_output), axis=1)
        else:
            front_output = front_output_list[0]
            
        return front_output


    def mag(self, cplx_input, eps=1e-07):
        # mag_summed = cplx_input.pow(2.).sum(-1) + eps
        mag_summed = cplx_input.real.pow(2.) + cplx_input.imag.pow(2.) + eps
        return mag_summed.pow(0.5)


    def phase(self, cplx_input, ):
        return torch.atan2(cplx_input.imag, cplx_input.real)
        # return torch.angle(cplx_input)



class BackEnd(nn.Module):
    def __init__(self, channel='stereo', \
                        n_fft=2048, \
                        hop_length=None, \
                        win_length=None, \
                        window="hann", \
                        eps=1e-07, \
                        orig_freq=44100, \
                        new_freq=16000, \
                        device=torch.device("cpu")):
        super(BackEnd, self).__init__()
        self.device = device
        self.channel = channel
        self.n_fft = n_fft
        self.hop_length = n_fft//4 if hop_length==None else hop_length
        self.win_length = n_fft if win_length==None else win_length
        self.eps = eps
        if window=="hann":
            self.window = torch.hann_window(window_length=self.win_length, periodic=True).to(self.device)
        elif window=="hamming":
            self.window = torch.hamming_window(window_length=self.win_length, periodic=True).to(self.device)
        self.resample_func_8k = torchaudio.transforms.Resample(orig_freq=orig_freq, new_freq=8000).to(self.device)
        self.resample_func = torchaudio.transforms.Resample(orig_freq=orig_freq, new_freq=new_freq).to(self.device)

    def magphase_to_cplx(self, magphase_spec):
        real = magphase_spec[..., 0] * torch.cos(magphase_spec[..., 1])
        imaginary = magphase_spec[..., 0] * torch.sin(magphase_spec[..., 1])
        return torch.cat((real.unsqueeze(-1), imaginary.unsqueeze(-1)), dim=-1)


    def forward(self, input, phase, mode):
        # back-end function which convert output spectrograms into waveform
        # input shape : batch x channel x frequency x time
        # output shape : batch x channel x raw waveform

        # convert to shape : batch x frequency x time x channel
        input = input.permute(0, 2, 3, 1)
        # pad highest frequency
        pad = torch.zeros((input.shape[0], 1, input.shape[2], input.shape[3])).to(self.device)
        input = torch.cat((pad, input), dim=1)

        back_output_list = []
        channel_count = 0
        for i, cur_mode in enumerate(mode):
            # Real & Imaginary
            if cur_mode=="cplx":
                if self.channel=="mono":
                    output = ta_F.istft(input[...,channel_count:channel_count+2], n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window).unsqueeze(1)
                    channel_count += 2
                elif self.channel=="stereo":
                    cplx_spec = torch.cat([input[...,channel_count:channel_count+2], input[...,channel_count+2:channel_count+4]], dim=0)
                    output_wav = ta_F.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
                    output = torch.cat((output_wav[:output_wav.shape[0]//2].unsqueeze(1), output_wav[output_wav.shape[0]//2:].unsqueeze(1)), dim=1)
                    channel_count += 4
                back_output_list.append(output)
            # Magnitude & Phase
            elif cur_mode=="mag_phase" or cur_mode=="mag":
                if self.channel=="mono":
                    if cur_mode=="mag":
                        input_spec = torch.cat((input[...,channel_count:channel_count+1], phase), axis=-1)
                        channel_count += 1
                    else:
                        input_spec = input[...,channel_count:channel_count+2]
                        channel_count += 2
                    cplx_spec = self.magphase_to_cplx(input_spec)
                    output = ta_F.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window).unsqueeze(1)
                elif self.channel=="stereo":
                    if cur_mode=="mag":
                        input_spec_l = torch.cat((input[...,channel_count:channel_count+1], phase[...,0:1]), axis=-1)
                        input_spec_r = torch.cat((input[...,channel_count+1:channel_count+2], phase[...,1:2]), axis=-1)
                        channel_count += 2
                    else:
                        input_spec_l = input[...,channel_count:channel_count+2]
                        input_spec_r = input[...,channel_count+2:channel_count+4]
                        channel_count += 4
                    cplx_spec_l = self.magphase_to_cplx(input_spec_l)
                    cplx_spec_r = self.magphase_to_cplx(input_spec_r)
                    cplx_spec = torch.cat([cplx_spec_l, cplx_spec_r], dim=0)
                    output_wav = torch.istft(cplx_spec, n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window=self.window)
                    output = torch.cat((output_wav[:output_wav.shape[0]//2].unsqueeze(1), output_wav[output_wav.shape[0]//2:].unsqueeze(1)), dim=1)
                    channel_count += 4
                back_output_list.append(output)
            elif cur_mode=="griff":
                if self.channel=="mono":
                    output = self.griffin_lim(input.squeeze(-1), input.device).unsqueeze(1)
                    # output = self.griff(input.permute(0, 3, 1, 2))
                else:
                    output_l = self.griffin_lim(input[..., 0], input.device).unsqueeze(1)
                    output_r = self.griffin_lim(input[..., 1], input.device).unsqueeze(1)
                    output = torch.cat((output_l, output_r), axis=1)

            back_output_list.append(output)

        # combine all demanded feature outputs
        if not back_output_list:
            raise NameError("NameError at BackEnd: check using features for back-end")
        elif len(mode)!=1:
            for i, cur_output in enumerate(back_output_list):
                if i==0:
                    back_output = cur_output
                else:
                    back_output = torch.cat((back_output, cur_output), axis=1)
        else:
            back_output = back_output_list[0]
        
        return back_output


    def griffin_lim(self, l_est, gpu, n_iter=100):
        l_est = l_est.cpu().detach()

        l_est = torch.pow(l_est, 1/0.80)
        # l_est  [batch, channel, time]
        l_mag = l_est.unsqueeze(-1)
        l_phase = 2 * np.pi * torch.rand_like(l_mag) - np.pi
        real = l_mag * torch.cos(l_phase)
        imag = l_mag * torch.sin(l_phase)
        S = torch.cat((real, imag), axis=-1)
        S_mag = (real**2 + imag**2 + self.eps) ** 1/2
        for i in range(n_iter):
            x = ta_F.istft(S, n_fft=2048, hop_length=512, win_length=2048, window=torch.hann_window(2048))
            S_new = torch.stft(x, n_fft=2048, hop_length=512, win_length=2048, window=torch.hann_window(2048))
            S_new_phase = S_new/mag(S_new)
            S = S_mag * S_new_phase
        return x / torch.max(torch.abs(x))