File size: 20,408 Bytes
b369bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b240372
 
 
 
 
b369bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import numpy as np
from torch import optim
import os
import math
import cv2
import albumentations as A

# tensorboard is needed for run_train_step() which is commented out here
# from torch.utils.tensorboard import SummaryWriter

activation_fn = nn.ELU()

MAX_DEPTH = 81
DEPTH_OFFSET = 0.1 # This is used for ensuring depth prediction gets into positive range

USE_APEX = False  # Enable if you have GPU with Tensor Cores, otherwise doesnt really bring any benefits.
APEX_OPT_LEVEL = "O2"

BATCH_NORM_MOMENTUM = 0.005
ENABLE_BIAS = True

device = torch.device("cpu")
if torch.cuda.is_available() :
    device = torch.device("cuda")
print(f'--- BTS will use device: {device}')

if USE_APEX:
    import apex


class UpscaleLayer(nn.Module):
    def __init__(self, in_channels, out_channels):
        super(UpscaleLayer, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, 3, padding=1, bias=ENABLE_BIAS)
        self.bn = nn.BatchNorm2d(out_channels, momentum=BATCH_NORM_MOMENTUM)

    def forward(self, input):
        input = nn.functional.interpolate(input, scale_factor=2, mode="nearest")
        input = activation_fn(self.conv(input))
        input = self.bn(input)
        return input


class UpscaleBlock(nn.Module):
    def __init__(self, in_channels, skip_channels, out_channels):
        super(UpscaleBlock, self).__init__()
        self.uplayer = UpscaleLayer(in_channels, out_channels)
        self.conv = nn.Conv2d(out_channels+skip_channels, out_channels, 3, padding=1, bias=ENABLE_BIAS)
        self.bn2 = nn.BatchNorm2d(out_channels, BATCH_NORM_MOMENTUM)

    def forward(self, input_j):
        input, skip = input_j
        input = self.uplayer(input)
        cat = torch.cat((input, skip), 1)
        input = activation_fn(self.conv(cat))
        input = self.bn2(input)
        return input, cat


class UpscaleNetwork(nn.Module):
    def __init__(self, filters=[512, 256]):
        super(UpscaleNetwork, self,).__init__()
        self.upscale_block1 = UpscaleBlock(2208, 384, filters[0])  # H16
        self.upscale_block2 = UpscaleBlock(filters[0], 192, filters[1])  # H8

    def forward(self, raw_input):
        input, h2, h4, h8, h16 = raw_input
        input, _ = self.upscale_block1((input, h16))
        input, cat = self.upscale_block2((input, h8))
        return input, cat


class AtrousBlock(nn.Module):
    def __init__(self, input_filters, filters, dilation, apply_initial_bn=True):
        super(AtrousBlock, self).__init__()

        self.initial_bn = nn.BatchNorm2d(input_filters, BATCH_NORM_MOMENTUM)
        self.apply_initial_bn = apply_initial_bn

        self.conv1 = nn.Conv2d(input_filters, filters*2, 1, 1, 0, bias=False)
        self.norm1 = nn.BatchNorm2d(filters*2, BATCH_NORM_MOMENTUM)

        self.atrous_conv = nn.Conv2d(filters*2, filters, 3, 1, dilation, dilation, bias=False)
        self.norm2 = nn.BatchNorm2d(filters, BATCH_NORM_MOMENTUM)

    def forward(self, input):
        if self.apply_initial_bn:
            input = self.initial_bn(input)

        input = self.conv1(input.relu())
        input = self.norm1(input)
        input = self.atrous_conv(input.relu())
        input = self.norm2(input)
        return input


class ASSPBlock(nn.Module):
    def __init__(self, input_filters=256, cat_filters=448, atrous_filters=128):
        super(ASSPBlock, self).__init__()

        self.atrous_conv_r3 = AtrousBlock(input_filters, atrous_filters, 3, apply_initial_bn=False)
        self.atrous_conv_r6 = AtrousBlock(cat_filters + atrous_filters, atrous_filters, 6)
        self.atrous_conv_r12 = AtrousBlock(cat_filters + atrous_filters*2, atrous_filters, 12)
        self.atrous_conv_r18 = AtrousBlock(cat_filters + atrous_filters*3, atrous_filters, 18)
        self.atrous_conv_r24 = AtrousBlock(cat_filters + atrous_filters*4, atrous_filters, 24)

        self.conv = nn.Conv2d(5 * atrous_filters + cat_filters, atrous_filters, 3, 1, 1, bias=ENABLE_BIAS)

    def forward(self, input):
        input, cat = input
        layer1_out = self.atrous_conv_r3(input)
        concat1 = torch.cat((cat, layer1_out), 1)

        layer2_out = self.atrous_conv_r6(concat1)
        concat2 = torch.cat((concat1, layer2_out), 1)

        layer3_out = self.atrous_conv_r12(concat2)
        concat3 = torch.cat((concat2, layer3_out), 1)

        layer4_out = self.atrous_conv_r18(concat3)
        concat4 = torch.cat((concat3, layer4_out), 1)

        layer5_out = self.atrous_conv_r24(concat4)
        concat5 = torch.cat((concat4, layer5_out), 1)

        features = activation_fn(self.conv(concat5))
        return features

# Code of this layer is taken from official PyTorch implementation
class LPGLayer(nn.Module):
    def __init__(self, scale):
        super(LPGLayer, self).__init__()
        self.scale = scale
        self.u = torch.arange(self.scale).reshape([1, 1, self.scale]).float()
        self.v = torch.arange(int(self.scale)).reshape([1, self.scale, 1]).float()

    def forward(self, plane_eq):
        plane_eq_expanded = torch.repeat_interleave(plane_eq, int(self.scale), 2)
        plane_eq_expanded = torch.repeat_interleave(plane_eq_expanded, int(self.scale), 3)

        n1 = plane_eq_expanded[:, 0, :, :]
        n2 = plane_eq_expanded[:, 1, :, :]
        n3 = plane_eq_expanded[:, 2, :, :]
        n4 = plane_eq_expanded[:, 3, :, :]

        u = self.u.repeat(plane_eq.size(0), plane_eq.size(2) * int(self.scale), plane_eq.size(3)).to(device)
        u = (u - (self.scale - 1) * 0.5) / self.scale

        v = self.v.repeat(plane_eq.size(0), plane_eq.size(2), plane_eq.size(3) * int(self.scale)).to(device)
        v = (v - (self.scale - 1) * 0.5) / self.scale

        d = n4 / (n1 * u + n2 * v + n3)
        d = d.unsqueeze(1)
        return d


class Reduction(nn.Module):
    def __init__(self, scale, input_filters, is_final=False):
        super(Reduction, self).__init__()
        reduction_count = int(math.log(input_filters, 2)) - 2
        self.reductions = torch.nn.Sequential()
        for i in range(reduction_count):
            if i != reduction_count-1:
                self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
                    nn.Conv2d(int(input_filters / math.pow(2, i)), int(input_filters / math.pow(2, i + 1)), 1, 1, 0, bias=ENABLE_BIAS),
                    activation_fn))
            else:
                if not is_final:
                    self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
                        nn.Conv2d(int(input_filters / math.pow(2, i)), int(input_filters / math.pow(2, i + 1)), 1, 1, 0, bias=ENABLE_BIAS)))
                else:
                    self.reductions.add_module("1x1_reduc_%d_%d" % (scale, i), nn.Sequential(
                        nn.Conv2d(int(input_filters / math.pow(2, i)), 1, 1, 1, 0, bias=ENABLE_BIAS), nn.Sigmoid()))

    def forward(self, ip):
        return self.reductions(ip)


class LPGBlock(nn.Module):
    def __init__(self, scale, input_filters=128):
        super(LPGBlock, self).__init__()
        self.scale = scale

        self.reduction = Reduction(scale, input_filters)

        self.conv = nn.Conv2d(4, 3, 1, 1, 0)
        self.LPGLayer = LPGLayer(scale)

    def forward(self, input):
        input = self.reduction(input)

        plane_parameters = torch.zeros_like(input)
        input = self.conv(input)

        theta = input[:, 0, :, :].sigmoid() * 3.1415926535 / 6
        phi = input[:, 1, :, :].sigmoid() * 3.1415926535 * 2
        dist = input[:, 2, :, :].sigmoid() * MAX_DEPTH

        plane_parameters[:, 0, :, :] = torch.sin(theta) * torch.cos(phi)
        plane_parameters[:, 1, :, :] = torch.sin(theta) * torch.sin(phi)
        plane_parameters[:, 2, :, :] = torch.cos(theta)
        plane_parameters[:, 3, :, :] = dist

        plane_parameters[:, 0:3, :, :] = F.normalize(plane_parameters.clone()[:, 0:3, :, :], 2, 1)

        depth = self.LPGLayer(plane_parameters.float())
        return depth


class bts_encoder(nn.Module):
    def __init__(self):
        super(bts_encoder, self).__init__()
        self.dense_op_h2 = None
        self.dense_op_h4 = None
        self.dense_op_h8 = None
        self.dense_op_h16 = None
        self.dense_features = None

        self.dense_feature_extractor = self.initialize_dense_feature_extractor()
        self.freeze_batch_norm()
        self.initialize_hooks()

    def freeze_batch_norm(self):
        for module in self.dense_feature_extractor.modules():
            if isinstance(module, torch.nn.modules.BatchNorm2d):
                module.track_running_stats = True
                module.eval()
                module.affine = True
                module.requires_grad = True

    def initialize_dense_feature_extractor(self):
        dfe = torchvision.models.densenet161(True, True)
        dfe.features.denseblock1.requires_grad = False
        dfe.features.denseblock2.requires_grad = False
        dfe.features.conv0.requires_grad = False
        return dfe

    def set_h2(self, module, input_, output):
        self.dense_op_h2 = output

    def set_h4(self, module, input_, output):
        self.dense_op_h4 = output

    def set_h8(self, module, input_, output):
        self.dense_op_h8 = output

    def set_h16(self, module, input_, output):
        self.dense_op_h16 = output

    def set_dense_features(self, module, input_, output):
        self.dense_features = output

    def initialize_hooks(self):
        self.dense_feature_extractor.features.relu0.register_forward_hook(self.set_h2)
        self.dense_feature_extractor.features.pool0.register_forward_hook(self.set_h4)
        self.dense_feature_extractor.features.transition1.register_forward_hook(self.set_h8)
        self.dense_feature_extractor.features.transition2.register_forward_hook(self.set_h16)
        self.dense_feature_extractor.features.norm5.register_forward_hook(self.set_dense_features)

    def forward(self, ip):
        _ = self.dense_feature_extractor(ip)
        joint_input = (self.dense_features.relu(), self.dense_op_h2, self.dense_op_h4, self.dense_op_h8, self.dense_op_h16)
        return joint_input


class bts_decoder(nn.Module):
    def __init__(self):
        super(bts_decoder, self).__init__()
        self.UpscaleNet = UpscaleNetwork()
        self.DenseASSPNet = ASSPBlock()

        self.upscale_block3 = UpscaleBlock(64, 96, 128)  # H4
        self.upscale_block4 = UpscaleBlock(128, 96, 128)  # H2

        self.LPGBlock8 = LPGBlock(8, 128)
        self.LPGBlock4 = LPGBlock(4, 64)  # 64 Filter
        self.LPGBlock2 = LPGBlock(2, 64)  # 64 Filter

        self.upconv_h4 = UpscaleLayer(128, 64)
        self.upconv_h2 = UpscaleLayer(64, 32)  # 64 Filter
        self.upconv_h = UpscaleLayer(64, 32)  # 32 filter

        self.conv_h4 = nn.Conv2d(161, 64, 3, 1, 1, bias=ENABLE_BIAS)  # 64 Filter
        self.conv_h2 = nn.Conv2d(129, 64, 3, 1, 1, bias=ENABLE_BIAS)  # 64 Filter
        self.conv_h1 = nn.Conv2d(36, 32, 3, 1, 1, bias=ENABLE_BIAS)

        self.reduction1x1 = Reduction(1, 32, True)

        self.final_conv = nn.Conv2d(32, 1, 3, 1, 1, bias=ENABLE_BIAS)

    def forward(self, joint_input, focal):
        (dense_features, dense_op_h2, dense_op_h4, dense_op_h8, dense_op_h16) = joint_input
        upscaled_out = self.UpscaleNet(joint_input)

        dense_assp_out = self.DenseASSPNet(upscaled_out)

        upconv_h4 = self.upconv_h4(dense_assp_out)
        depth_8x8 = self.LPGBlock8(dense_assp_out) / MAX_DEPTH
        depth_8x8_ds = nn.functional.interpolate(depth_8x8, scale_factor=1 / 4, mode="nearest")
        depth_concat_4x4 = torch.cat((depth_8x8_ds, dense_op_h4, upconv_h4), 1)

        conv_h4 = activation_fn(self.conv_h4(depth_concat_4x4))
        upconv_h2 = self.upconv_h2(conv_h4)
        depth_4x4 = self.LPGBlock4(conv_h4) / MAX_DEPTH

        depth_4x4_ds = nn.functional.interpolate(depth_4x4, scale_factor=1 / 2, mode="nearest")
        depth_concat_2x2 = torch.cat((depth_4x4_ds, dense_op_h2, upconv_h2), 1)

        conv_h2 = activation_fn(self.conv_h2(depth_concat_2x2))
        upconv_h = self.upconv_h(conv_h2)
        depth_1x1 = self.reduction1x1(upconv_h)
        depth_2x2 = self.LPGBlock2(conv_h2) / MAX_DEPTH

        depth_concat = torch.cat((upconv_h, depth_1x1, depth_2x2, depth_4x4, depth_8x8), 1)
        depth = activation_fn(self.conv_h1(depth_concat))
        depth = self.final_conv(depth).sigmoid() * MAX_DEPTH + DEPTH_OFFSET

        depth *= focal.view(-1, 1, 1, 1) / 715.0873
        return depth, depth_2x2, depth_4x4, depth_8x8


class bts_model(nn.Module):
    def __init__(self):
        super(bts_model, self).__init__()
        self.encoder = bts_encoder()
        self.decoder = bts_decoder()

    def forward(self, input, focal=715.0873):
        joint_input = self.encoder(input)
        return self.decoder(joint_input, focal)


class SilogLoss(nn.Module):
    def __init__(self):
        super(SilogLoss, self).__init__()

    def forward(self, ip, target, ratio=10, ratio2=0.85):
        ip = ip.reshape(-1)
        target = target.reshape(-1)

        mask = (target > 1) & (target < 81)
        masked_ip = torch.masked_select(ip.float(), mask)
        masked_op = torch.masked_select(target, mask)

        log_diff = torch.log(masked_ip * ratio) - torch.log(masked_op * ratio)
        log_diff_masked = log_diff

        silog1 = torch.mean(log_diff_masked ** 2)
        silog2 = ratio2 * (torch.mean(log_diff_masked) ** 2)
        silog_loss = torch.sqrt(silog1 - silog2) * ratio
        return silog_loss


class BtsController:
    def __init__(self, log_directory='run_1', logs_folder='tensorboard', backprop_frequency=1):
        self.bts = bts_model().float().to(device)
        self.optimizer = torch.optim.AdamW([{'params': self.bts.encoder.parameters(), 'weight_decay': 1e-2},
                                       {'params': self.bts.decoder.parameters(), 'weight_decay': 0}],
                                      lr=1e-4, eps=1e-6)

        if USE_APEX:
            self.bts, self.optimizer = apex.amp.initialize(self.bts, self.optimizer, opt_level=APEX_OPT_LEVEL)

        self.bts = torch.nn.DataParallel(self.bts)

        self.backprop_frequency = backprop_frequency

        log_path = os.path.join(logs_folder, log_directory)
        # self.writer = SummaryWriter(log_path)

        self.criterion = SilogLoss()

        self.learning_rate_scheduler = optim.lr_scheduler.ExponentialLR(self.optimizer, 0.95)

        self.current_epoch = 0
        self.last_loss = 0
        self.current_step = 0

    def eval(self):
        self.bts = self.bts.eval()

    def train(self):
        self.bts = self.bts.train()

    def predict(self, input, is_channels_first=True, focal=715.0873, normalize=False):
        if normalize:
            input = A.Compose([A.Normalize()])(**{"image": input})["image"]

        if is_channels_first:
            tensor_input = torch.tensor(input).unsqueeze(-1).to(device).float().transpose(0, 3).transpose(2,
                                                                                                          3).transpose(
                1, 2)
        else:
            tensor_input = torch.tensor(input).unsqueeze(-1).to(device).float().transpose(0, 3).transpose(1,
                                                                                                          2).transpose(
                2, 3)

        shape_changed = False
        org_shape = tensor_input.shape[2:]
        if org_shape[0] % 32 != 0 or org_shape[1] % 32 != 0:
            shape_changed = True
            new_shape_y = round(org_shape[0] / 32) * 32
            new_shape_x = round(org_shape[1] / 32) * 32
            tensor_input = F.interpolate(tensor_input, (new_shape_y, new_shape_x), mode="bilinear")

        model_output = self.bts(tensor_input, torch.tensor(focal).unsqueeze(0))[0][0].detach().unsqueeze(0)
        if shape_changed:
            model_output = F.interpolate(model_output, (org_shape[0], org_shape[1]), mode="nearest")

        return model_output.cpu().squeeze()

    @staticmethod
    def depth_map_to_rgbimg(depth_map):
        depth_map = np.asarray(np.squeeze((255 - torch.clamp_max(depth_map * 4, 250)).byte().numpy()), np.uint8)
        depth_map = np.asarray(cv2.cvtColor(depth_map, cv2.COLOR_GRAY2RGB), np.uint8)
        return depth_map

    @staticmethod
    def depth_map_to_grayimg(depth_map):
        depth_map = np.asarray(np.squeeze((255 - torch.clamp_max(depth_map * 4, 250)).byte().numpy()), np.uint8)
        return depth_map

    @staticmethod
    def normalize_img(image):
        transformation = A.Compose([
            A.Normalize()
        ])
        return transformation(**{"image": image})["image"]

    # def run_train_step(self, tensor_input, tensor_output, tensor_focal):
    #     tensor_input, tensor_output = tensor_input.to(device), tensor_output.to(device)
    #     # Get Models prediction and calculate loss
    #     model_output, depth2, depth4, depth8 = self.bts(tensor_input, tensor_focal)
    #
    #     loss = self.criterion(model_output, tensor_output) * 1/self.backprop_frequency
    #
    #     if USE_APEX:
    #         with apex.amp.scale_loss(loss, self.optimizer) as scaled_loss:
    #             scaled_loss.backward()
    #     else:
    #         loss.backward()
    #
    #     if self.current_step % self.backprop_frequency == 0:  # Make update once every x steps
    #         torch.nn.utils.clip_grad_norm_(self.bts.parameters(), 5)
    #         self.optimizer.step()
    #         self.optimizer.zero_grad()
    #
    #     if self.current_step % 100 == 0:
    #         self.writer.add_scalar("Loss", loss.item() * self.backprop_frequency / tensor_input.shape[0], self.current_step)
    #
    #     if self.current_step % 1000 == 0:
    #         img = tensor_input[0].detach().transpose(0, 2).transpose(0, 1).cpu().numpy().astype(np.uint8)
    #         self.writer.add_image("Input", img, self.current_step, None, "HWC")
    #
    #         visual_result = (255-torch.clamp_max(torchvision.utils.make_grid([tensor_output[0], model_output[0]]) * 5, 250)).byte()
    #
    #         self.writer.add_image("Output/Prediction", visual_result, self.current_step)
    #         depths = [depth2[0], depth4[0], depth8[0]]
    #         depths = [depth*MAX_DEPTH for depth in depths]
    #         depth_visual = (255-torch.clamp_max(torchvision.utils.make_grid(depths) * 5, 250)).byte()
    #
    #         self.writer.add_image("Depths", depth_visual, self.current_step)
    #
    #     self.current_step += 1

    def save_model(self, path):
        save_dict = {
            'epoch': self.current_epoch,
            'model_state_dict': self.bts.state_dict(),
            'optimizer_state_dict': self.optimizer.state_dict(),
            "scheduler_state_dict": self.learning_rate_scheduler.state_dict(),
            'loss': self.last_loss,
            "last_step": self.current_step
        }
        if USE_APEX:
            save_dict["amp"] = apex.amp.state_dict()
            save_dict["opt_level"] = APEX_OPT_LEVEL

        torch.save(save_dict, path)

    def load_model(self, path):
        dict = torch.load(path, map_location = device)

        if USE_APEX:
            saved_opt_level = dict["opt_level"]
            self.bts, self.optimizer = apex.amp.initialize(self.bts, self.optimizer, opt_level=saved_opt_level)
            apex.amp.load_state_dict(dict["amp"])

        self.current_epoch = dict["epoch"]
        self.bts.load_state_dict(dict["model_state_dict"])
        self.bts = self.bts.float().to(device)

        self.optimizer.load_state_dict(dict["optimizer_state_dict"])

        self.learning_rate_scheduler.load_state_dict(dict["scheduler_state_dict"])
        self.last_loss = dict["loss"]
        self.current_step = dict["last_step"]

        return dict