Spaces:
Running
Running
File size: 5,454 Bytes
ff5aa27 8762e3a ff5aa27 a0164a7 ff5aa27 6eeb731 ff5aa27 6eeb731 036b97d a0164a7 036b97d a0164a7 036b97d a0164a7 036b97d 6eeb731 42af183 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 8d692ce ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 ff5aa27 a0164a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
import gradio as gr
from modules.whisper_Inference import WhisperInference
import os
from ui.htmls import CSS, MARKDOWN
from modules.youtube_manager import get_ytmetas
def open_output_folder():
folder_path = "outputs"
if os.path.exists(folder_path):
os.system(f"start {folder_path}")
else:
print(f"The folder {folder_path} does not exist.")
def on_change_models(model_size):
translatable_model = ["large", "large-v1", "large-v2"]
if model_size not in translatable_model:
return gr.Checkbox.update(visible=False, value=False, interactive=False)
else:
return gr.Checkbox.update(visible=True, value=False, label="Translate to English?", interactive=True)
whisper_inf = WhisperInference()
block = gr.Blocks(css=CSS).queue(api_open=False)
with block:
with gr.Row():
with gr.Column():
gr.Markdown(MARKDOWN, elem_id="md_project")
with gr.Tabs():
with gr.TabItem("File"): # tab1
with gr.Row():
input_file = gr.Files(type="file", label="Upload File here")
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_file,
inputs=[input_file, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=open_output_folder, inputs=[], outputs=[])
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Youtube"): # tab2
with gr.Row():
tb_youtubelink = gr.Textbox(label="Youtube Link")
with gr.Row().style(equal_height=True):
with gr.Column():
img_thumbnail = gr.Image(label="Youtube Thumbnail")
with gr.Column():
tb_title = gr.Label(label="Youtube Title")
tb_description = gr.Textbox(label="Youtube Description", max_lines=15)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(choices=["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_youtube,
inputs=[tb_youtubelink, dd_model, dd_lang, dd_subformat, cb_translate],
outputs=[tb_indicator])
tb_youtubelink.change(get_ytmetas, inputs=[tb_youtubelink],
outputs=[img_thumbnail, tb_title, tb_description])
btn_openfolder.click(fn=open_output_folder, inputs=[], outputs=[])
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
with gr.TabItem("Mic"): # tab3
with gr.Row():
mic_input = gr.Microphone(label="Record with Mic", type="filepath", interactive=True)
with gr.Row():
dd_model = gr.Dropdown(choices=whisper_inf.available_models, value="large-v2", label="Model")
dd_lang = gr.Dropdown(choices=["Automatic Detection"] + whisper_inf.available_langs,
value="Automatic Detection", label="Language")
dd_subformat = gr.Dropdown(["SRT", "WebVTT"], value="SRT", label="Subtitle Format")
with gr.Row():
cb_translate = gr.Checkbox(value=False, label="Translate to English?", interactive=True)
with gr.Row():
btn_run = gr.Button("GENERATE SUBTITLE FILE", variant="primary")
with gr.Row():
tb_indicator = gr.Textbox(label="Output")
btn_openfolder = gr.Button('π').style(full_width=False)
btn_run.click(fn=whisper_inf.transcribe_mic,
inputs=[mic_input, dd_model, dd_lang, dd_subformat, cb_translate], outputs=[tb_indicator])
btn_openfolder.click(fn=open_output_folder, inputs=[], outputs=[])
dd_model.change(fn=on_change_models, inputs=[dd_model], outputs=[cb_translate])
block.launch()
|