File size: 5,863 Bytes
0f77492
e991395
3f70034
2a4fa08
3f70034
7eaa482
 
 
3f70034
32509de
 
 
8da8748
083d0cc
 
 
 
 
 
 
0494311
c93db3f
 
 
 
9e0a638
736cf38
 
 
8449dc3
 
3f70034
 
b7e701b
3f9463b
9f8c089
3f70034
 
847af29
4c05546
37c3162
d868316
3f70034
dd65208
4ec36d4
b7e701b
3f70034
52668da
 
 
 
2e05e59
144a711
9e7cb60
32509de
b551682
ea7fc1c
b551682
 
ea7fc1c
4ac0473
b551682
860cf06
b551682
 
ea7fc1c
6227586
ea7fc1c
 
 
 
 
b551682
 
ea7fc1c
 
aa37c1f
ea7fc1c
a97e9b5
c93db3f
2ba8130
c93db3f
 
 
 
 
 
32509de
 
c93db3f
 
 
2ba8130
 
 
 
 
 
 
 
 
 
 
 
d1438f4
 
 
 
 
32509de
ab7c9b0
4bea17a
ab7c9b0
d8c2ba0
d1438f4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
# Whisper-WebUI
A Gradio-based browser interface for [Whisper](https://github.com/openai/whisper). You can use it as an Easy Subtitle Generator!

![Whisper WebUI](https://github.com/jhj0517/Whsiper-WebUI/blob/master/screenshot.png)

## Notebook
If you wish to try this on Colab, you can do it in [here](https://colab.research.google.com/github/jhj0517/Whisper-WebUI/blob/master/notebook/whisper-webui.ipynb)!

# Feature
- Select the Whisper implementation you want to use between :
   - [openai/whisper](https://github.com/openai/whisper)
   - [SYSTRAN/faster-whisper](https://github.com/SYSTRAN/faster-whisper) (used by default)
   - [Vaibhavs10/insanely-fast-whisper](https://github.com/Vaibhavs10/insanely-fast-whisper)
- Generate subtitles from various sources, including :
  - Files
  - Youtube
  - Microphone
- Currently supported subtitle formats : 
  - SRT
  - WebVTT
  - txt ( only text file without timeline )
- Speech to Text Translation 
  - From other languages to English. ( This is Whisper's end-to-end speech-to-text translation feature )
- Text to Text Translation
  - Translate subtitle files using Facebook NLLB models
  - Translate subtitle files using DeepL API
- Pre-processing audio input with [Silero VAD](https://github.com/snakers4/silero-vad).
- Post-processing with speaker diarization using the [pyannote](https://huggingface.co/pyannote/speaker-diarization-3.1) model.
   - To download the pyannote model, you need to have a Huggingface token and manually accept their terms in the pages below.
      1. https://huggingface.co/pyannote/speaker-diarization-3.1
      2. https://huggingface.co/pyannote/segmentation-3.0

# Installation and Running
### Prerequisite
To run this WebUI, you need to have `git`, `python` version 3.8 ~ 3.10, `FFmpeg`. <br>
And if you're not using an Nvida GPU, or using a different `CUDA` version than 12.4,  edit the [`requirements.txt`](https://github.com/jhj0517/Whisper-WebUI/blob/master/requirements.txt) to match your environment.

Please follow the links below to install the necessary software:
- git : [https://git-scm.com/downloads](https://git-scm.com/downloads)
- python : [https://www.python.org/downloads/](https://www.python.org/downloads/) **( If your python version is too new, torch will not install properly.)**
- FFmpeg :  [https://ffmpeg.org/download.html](https://ffmpeg.org/download.html)
- CUDA : [https://developer.nvidia.com/cuda-downloads](https://developer.nvidia.com/cuda-downloads)

After installing FFmpeg, **make sure to add the `FFmpeg/bin` folder to your system PATH!**

### Automatic Installation

1. Download `Whisper-WebUI.zip` with the file corresponding to your OS from [v1.0.0](https://github.com/jhj0517/Whisper-WebUI/releases/tag/v1.0.0) and extract its contents. 
2. Run `install.bat` or `install.sh` to install dependencies. (This will create a `venv` directory and install dependencies there.)
3. Start WebUI with `start-webui.bat` or `start-webui.sh`
4. To update the WebUI, run `update.bat` or `update.sh`

And you can also run the project with command line arguments if you like to, see [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for a guide to arguments.

- ## Running with Docker 

1. Git clone the repository

```sh
git clone https://github.com/jhj0517/Whisper-WebUI.git
```

2. Build the image ( Image is about 7GB~ )

```sh
docker compose build 
```

3. Run the container 

```sh
docker compose up
```

4. Connect to the WebUI with your browser at `http://localhost:7860`

If needed, update the [`docker-compose.yaml`](https://github.com/jhj0517/Whisper-WebUI/blob/master/docker-compose.yaml) to match your environment.

# VRAM Usages
This project is integrated with [faster-whisper](https://github.com/guillaumekln/faster-whisper) by default for better VRAM usage and transcription speed.

According to faster-whisper, the efficiency of the optimized whisper model is as follows: 
| Implementation    | Precision | Beam size | Time  | Max. GPU memory | Max. CPU memory |
|-------------------|-----------|-----------|-------|-----------------|-----------------|
| openai/whisper    | fp16      | 5         | 4m30s | 11325MB         | 9439MB          |
| faster-whisper    | fp16      | 5         | 54s   | 4755MB          | 3244MB          |

If you want to use an implementation other than faster-whisper, use `--whisper_type` arg and the repository name.<br>
Read [wiki](https://github.com/jhj0517/Whisper-WebUI/wiki/Command-Line-Arguments) for more info about CLI args.

## Available models
This is Whisper's original VRAM usage table for models.

|  Size  | Parameters | English-only model | Multilingual model | Required VRAM | Relative speed |
|:------:|:----------:|:------------------:|:------------------:|:-------------:|:--------------:|
|  tiny  |    39 M    |     `tiny.en`      |       `tiny`       |     ~1 GB     |      ~32x      |
|  base  |    74 M    |     `base.en`      |       `base`       |     ~1 GB     |      ~16x      |
| small  |   244 M    |     `small.en`     |      `small`       |     ~2 GB     |      ~6x       |
| medium |   769 M    |    `medium.en`     |      `medium`      |     ~5 GB     |      ~2x       |
| large  |   1550 M   |        N/A         |      `large`       |    ~10 GB     |       1x       |


`.en` models are for English only, and the cool thing is that you can use the `Translate to English` option from the "large" models!

## TODO🗓

- [x] Add DeepL API translation
- [x] Add NLLB Model translation
- [x] Integrate with faster-whisper
- [x] Integrate with insanely-fast-whisper
- [x] Integrate with whisperX ( Only speaker diarization part )
- [ ] Add background music separation pre-processing with [MVSEP-MDX23](https://github.com/ZFTurbo/MVSEP-MDX23-music-separation-model)  
- [ ] Add fast api script
- [ ] Support real-time transcription for microphone