File size: 28,114 Bytes
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7962f8d
 
 
 
 
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3bd536
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3bd536
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ce5fe4
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
e679e08
 
4daf2ff
e679e08
 
4daf2ff
 
e679e08
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8db15a4
4daf2ff
8db15a4
 
 
4daf2ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import os
import sys
import numpy as np
import torch
import cv2
import time
import copy
import dill
from ultralytics import YOLO
import safetensors.torch
import gradio as gr

from modules.utils.paths import *
from modules.utils.image_helper import *
from modules.live_portrait.model_downloader import *
from modules.live_portrait_wrapper import LivePortraitWrapper
from modules.utils.camera import get_rotation_matrix
from modules.utils.helper import load_yaml
from modules.config.inference_config import InferenceConfig
from modules.live_portrait.spade_generator import SPADEDecoder
from modules.live_portrait.warping_network import WarpingNetwork
from modules.live_portrait.motion_extractor import MotionExtractor
from modules.live_portrait.appearance_feature_extractor import AppearanceFeatureExtractor
from modules.live_portrait.stitching_retargeting_network import StitchingRetargetingNetwork
from collections import OrderedDict


class LivePortraitInferencer:
    def __init__(self,
                 model_dir: str = MODELS_DIR,
                 output_dir: str = OUTPUTS_DIR):
        self.model_dir = model_dir
        self.output_dir = output_dir
        self.model_config = load_yaml(MODEL_CONFIG)["model_params"]

        self.appearance_feature_extractor = None
        self.motion_extractor = None
        self.warping_module = None
        self.spade_generator = None
        self.stitching_retargeting_module = None
        self.pipeline = None
        self.detect_model = None
        self.device = self.get_device()

        self.mask_img = None
        self.temp_img_idx = 0
        self.src_image = None
        self.src_image_list = None
        self.sample_image = None
        self.driving_images = None
        self.driving_values = None
        self.crop_factor = None
        self.psi = None
        self.psi_list = None
        self.d_info = None

    def load_models(self):
        def filter_stitcher(checkpoint, prefix):
            filtered_checkpoint = {key.replace(prefix + "_module.", ""): value for key, value in checkpoint.items() if
                                   key.startswith(prefix)}
            return filtered_checkpoint

        self.download_if_no_models()

        appearance_feat_config = self.model_config["appearance_feature_extractor_params"]
        self.appearance_feature_extractor = AppearanceFeatureExtractor(**appearance_feat_config).to(self.device)
        self.appearance_feature_extractor = self.load_safe_tensor(
            self.appearance_feature_extractor,
            os.path.join(self.model_dir, "appearance_feature_extractor.safetensors")
        )

        motion_ext_config = self.model_config["motion_extractor_params"]
        self.motion_extractor = MotionExtractor(**motion_ext_config).to(self.device)
        self.motion_extractor = self.load_safe_tensor(
            self.motion_extractor,
            os.path.join(self.model_dir, "motion_extractor.safetensors")
        )

        warping_module_config = self.model_config["warping_module_params"]
        self.warping_module = WarpingNetwork(**warping_module_config).to(self.device)
        self.warping_module = self.load_safe_tensor(
            self.warping_module,
            os.path.join(self.model_dir, "warping_module.safetensors")
        )

        spaded_decoder_config = self.model_config["spade_generator_params"]
        self.spade_generator = SPADEDecoder(**spaded_decoder_config).to(self.device)
        self.spade_generator = self.load_safe_tensor(
            self.spade_generator,
            os.path.join(self.model_dir, "spade_generator.safetensors")
        )

        stitcher_config = self.model_config["stitching_retargeting_module_params"]
        self.stitching_retargeting_module = StitchingRetargetingNetwork(**stitcher_config.get('stitching'))
        stitcher_model_path = os.path.join(self.model_dir, "stitching_retargeting_module.safetensors")
        ckpt = safetensors.torch.load_file(stitcher_model_path)
        self.stitching_retargeting_module.load_state_dict(filter_stitcher(ckpt, 'retarget_shoulder'))
        self.stitching_retargeting_module.to(self.device).eval()
        self.stitching_retargeting_module = {"stitching": self.stitching_retargeting_module}

        if self.pipeline is None:
            self.pipeline = LivePortraitWrapper(
                InferenceConfig(),
                self.appearance_feature_extractor,
                self.motion_extractor,
                self.warping_module,
                self.spade_generator,
                self.stitching_retargeting_module
            )

        self.detect_model = YOLO(MODEL_PATHS["face_yolov8n"])

    def edit_expression(self,
                        rotate_pitch=0,
                        rotate_yaw=0,
                        rotate_roll=0,
                        blink=0,
                        eyebrow=0,
                        wink=0,
                        pupil_x=0,
                        pupil_y=0,
                        aaa=0,
                        eee=0,
                        woo=0,
                        smile=0,
                        src_ratio=1,
                        sample_ratio=1,
                        sample_parts="All",
                        crop_factor=1.5,
                        src_image=None,
                        sample_image=None,
                        motion_link=None,
                        add_exp=None):
        if self.pipeline is None:
            self.load_models()

        try:
            rotate_yaw = -rotate_yaw

            new_editor_link = None
            if isinstance(motion_link, np.ndarray) and motion_link:
                self.psi = motion_link[0]
                new_editor_link = motion_link.copy()
            elif src_image is not None:
                if id(src_image) != id(self.src_image) or self.crop_factor != crop_factor:
                    self.crop_factor = crop_factor
                    self.psi = self.prepare_source(src_image, crop_factor)
                    self.src_image = src_image
                new_editor_link = []
                new_editor_link.append(self.psi)
            else:
                return None, None

            psi = self.psi
            s_info = psi.x_s_info
            #delta_new = copy.deepcopy()
            s_exp = s_info['exp'] * src_ratio
            s_exp[0, 5] = s_info['exp'][0, 5]
            s_exp += s_info['kp']

            es = ExpressionSet()

            if isinstance(sample_image, np.ndarray) and sample_image:
                if id(self.sample_image) != id(sample_image):
                    self.sample_image = sample_image
                    d_image_np = (sample_image * 255).byte().numpy()
                    d_face = self.crop_face(d_image_np[0], 1.7)
                    i_d = self.prepare_src_image(d_face)
                    self.d_info = self.pipeline.get_kp_info(i_d)
                    self.d_info['exp'][0, 5, 0] = 0
                    self.d_info['exp'][0, 5, 1] = 0

                # "OnlyExpression", "OnlyRotation", "OnlyMouth", "OnlyEyes", "All"
                if sample_parts == "OnlyExpression" or sample_parts == "All":
                    es.e += self.d_info['exp'] * sample_ratio
                if sample_parts == "OnlyRotation" or sample_parts == "All":
                    rotate_pitch += self.d_info['pitch'] * sample_ratio
                    rotate_yaw += self.d_info['yaw'] * sample_ratio
                    rotate_roll += self.d_info['roll'] * sample_ratio
                elif sample_parts == "OnlyMouth":
                    self.retargeting(es.e, self.d_info['exp'], sample_ratio, (14, 17, 19, 20))
                elif sample_parts == "OnlyEyes":
                    self.retargeting(es.e, self.d_info['exp'], sample_ratio, (1, 2, 11, 13, 15, 16))

            es.r = self.calc_fe(es.e, blink, eyebrow, wink, pupil_x, pupil_y, aaa, eee, woo, smile,
                                rotate_pitch, rotate_yaw, rotate_roll)

            if isinstance(add_exp, ExpressionSet):
                es.add(add_exp)

            new_rotate = get_rotation_matrix(s_info['pitch'] + es.r[0], s_info['yaw'] + es.r[1],
                                             s_info['roll'] + es.r[2])
            x_d_new = (s_info['scale'] * (1 + es.s)) * ((s_exp + es.e) @ new_rotate) + s_info['t']

            x_d_new = self.pipeline.stitching(psi.x_s_user, x_d_new)

            crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, x_d_new)
            crop_out = self.pipeline.parse_output(crop_out['out'])[0]

            crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb), cv2.INTER_LINEAR)
            out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(np.uint8)

            cropped_img, out_img = Image.fromarray(crop_out), Image.fromarray(out)
            temp_out_img_path, out_img_path = get_auto_incremental_file_path(TEMP_DIR, "png"), get_auto_incremental_file_path(OUTPUTS_DIR, "png")

            cropped_img.save(temp_out_img_path, compress_level=1, format="png")
            out_img.save(out_img_path, compress_level=1, format="png")
            new_editor_link.append(es)

            return out
        except Exception as e:
            raise

    def create_video(self,
                     retargeting_eyes,
                     retargeting_mouth,
                     turn_on,
                     tracking_src_vid,
                     animate_without_vid,
                     command,
                     crop_factor,
                     src_images=None,
                     driving_images=None,
                     motion_link=None,
                     progress=gr.Progress()):
        if not turn_on:
            return None, None
        src_length = 1

        if src_images is None:
            if motion_link is not None:
                self.psi_list = [motion_link[0]]
            else:
                return None, None

        if src_images is not None:
            src_length = len(src_images)
            if id(src_images) != id(self.src_images) or self.crop_factor != crop_factor:
                self.crop_factor = crop_factor
                self.src_images = src_images
                if 1 < src_length:
                    self.psi_list = self.prepare_source(src_images, crop_factor, True, tracking_src_vid)
                else:
                    self.psi_list = [self.prepare_source(src_images, crop_factor)]

        cmd_list, cmd_length = self.parsing_command(command, motion_link)
        if cmd_list is None:
            return None,None
        cmd_idx = 0

        driving_length = 0
        if driving_images is not None:
            if id(driving_images) != id(self.driving_images):
                self.driving_images = driving_images
                self.driving_values = self.prepare_driving_video(driving_images)
            driving_length = len(self.driving_values)

        total_length = max(driving_length, src_length)

        if animate_without_vid:
            total_length = max(total_length, cmd_length)

        c_i_es = ExpressionSet()
        c_o_es = ExpressionSet()
        d_0_es = None
        out_list = []

        psi = None
        for i in range(total_length):

            if i < src_length:
                psi = self.psi_list[i]
                s_info = psi.x_s_info
                s_es = ExpressionSet(erst=(s_info['kp'] + s_info['exp'], torch.Tensor([0, 0, 0]), s_info['scale'], s_info['t']))

            new_es = ExpressionSet(es=s_es)

            if i < cmd_length:
                cmd = cmd_list[cmd_idx]
                if 0 < cmd.change:
                    cmd.change -= 1
                    c_i_es.add(cmd.es)
                    c_i_es.sub(c_o_es)
                elif 0 < cmd.keep:
                    cmd.keep -= 1

                new_es.add(c_i_es)

                if cmd.change == 0 and cmd.keep == 0:
                    cmd_idx += 1
                    if cmd_idx < len(cmd_list):
                        c_o_es = ExpressionSet(es=c_i_es)
                        cmd = cmd_list[cmd_idx]
                        c_o_es.div(cmd.change)
            elif 0 < cmd_length:
                new_es.add(c_i_es)

            if i < driving_length:
                d_i_info = self.driving_values[i]
                d_i_r = torch.Tensor([d_i_info['pitch'], d_i_info['yaw'], d_i_info['roll']])#.float().to(device="cuda:0")

                if d_0_es is None:
                    d_0_es = ExpressionSet(erst = (d_i_info['exp'], d_i_r, d_i_info['scale'], d_i_info['t']))

                    self.retargeting(s_es.e, d_0_es.e, retargeting_eyes, (11, 13, 15, 16))
                    self.retargeting(s_es.e, d_0_es.e, retargeting_mouth, (14, 17, 19, 20))

                new_es.e += d_i_info['exp'] - d_0_es.e
                new_es.r += d_i_r - d_0_es.r
                new_es.t += d_i_info['t'] - d_0_es.t

            r_new = get_rotation_matrix(
                s_info['pitch'] + new_es.r[0], s_info['yaw'] + new_es.r[1], s_info['roll'] + new_es.r[2])
            d_new = new_es.s * (new_es.e @ r_new) + new_es.t
            d_new = self.pipeline.stitching(psi.x_s_user, d_new)
            crop_out = self.pipeline.warp_decode(psi.f_s_user, psi.x_s_user, d_new)
            crop_out = self.pipeline.parse_output(crop_out['out'])[0]

            crop_with_fullsize = cv2.warpAffine(crop_out, psi.crop_trans_m, get_rgb_size(psi.src_rgb),
                                                cv2.INTER_LINEAR)
            out = np.clip(psi.mask_ori * crop_with_fullsize + (1 - psi.mask_ori) * psi.src_rgb, 0, 255).astype(
                np.uint8)
            out_list.append(out)

            progress(i/total_length, "predicting..")

        if len(out_list) == 0:
            return None

        out_imgs = torch.cat([pil2tensor(img_rgb) for img_rgb in out_list])
        return out_imgs

    def download_if_no_models(self):
        for model_name, model_url in MODELS_URL.items():
            if model_url.endswith(".pt"):
                model_name += ".pt"
            else:
                model_name += ".safetensors"
            model_path = os.path.join(self.model_dir, model_name)
            if not os.path.exists(model_path):
                download_model(model_path, model_url)

    @staticmethod
    def load_safe_tensor(model, file_path):
        model.load_state_dict(safetensors.torch.load_file(file_path))
        model.eval()
        return model

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"

    def get_temp_img_name(self):
        self.temp_img_idx += 1
        return "expression_edit_preview" + str(self.temp_img_idx) + ".png"

    @staticmethod
    def parsing_command(command, motoin_link):
        command.replace(' ', '')
        lines = command.split('\n')

        cmd_list = []

        total_length = 0

        i = 0
        for line in lines:
            i += 1
            if not line:
                continue
            try:
                cmds = line.split('=')
                idx = int(cmds[0])
                if idx == 0: es = ExpressionSet()
                else: es = ExpressionSet(es = motoin_link[idx])
                cmds = cmds[1].split(':')
                change = int(cmds[0])
                keep = int(cmds[1])
            except Exception as e:
                print(f"(AdvancedLivePortrait) Command Err Line {i}: {line}, :{e}")
                return None, None

            total_length += change + keep
            es.div(change)
            cmd_list.append(Command(es, change, keep))

        return cmd_list, total_length

    def get_face_bboxes(self, image_rgb):
        pred = self.detect_model(image_rgb, conf=0.7, device="")
        return pred[0].boxes.xyxy.cpu().numpy()

    def detect_face(self, image_rgb, crop_factor, sort = True):
        bboxes = self.get_face_bboxes(image_rgb)
        w, h = get_rgb_size(image_rgb)

        print(f"w, h:{w, h}")

        cx = w / 2
        min_diff = w
        best_box = None
        for x1, y1, x2, y2 in bboxes:
            bbox_w = x2 - x1
            if bbox_w < 30: continue
            diff = abs(cx - (x1 + bbox_w / 2))
            if diff < min_diff:
                best_box = [x1, y1, x2, y2]
                print(f"diff, min_diff, best_box:{diff, min_diff, best_box}")
                min_diff = diff

        if best_box == None:
            print("Failed to detect face!!")
            return [0, 0, w, h]

        x1, y1, x2, y2 = best_box

        #for x1, y1, x2, y2 in bboxes:
        bbox_w = x2 - x1
        bbox_h = y2 - y1

        crop_w = bbox_w * crop_factor
        crop_h = bbox_h * crop_factor

        crop_w = max(crop_h, crop_w)
        crop_h = crop_w

        kernel_x = int(x1 + bbox_w / 2)
        kernel_y = int(y1 + bbox_h / 2)

        new_x1 = int(kernel_x - crop_w / 2)
        new_x2 = int(kernel_x + crop_w / 2)
        new_y1 = int(kernel_y - crop_h / 2)
        new_y2 = int(kernel_y + crop_h / 2)

        if not sort:
            return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]

        if new_x1 < 0:
            new_x2 -= new_x1
            new_x1 = 0
        elif w < new_x2:
            new_x1 -= (new_x2 - w)
            new_x2 = w
            if new_x1 < 0:
                new_x2 -= new_x1
                new_x1 = 0

        if new_y1 < 0:
            new_y2 -= new_y1
            new_y1 = 0
        elif h < new_y2:
            new_y1 -= (new_y2 - h)
            new_y2 = h
            if new_y1 < 0:
                new_y2 -= new_y1
                new_y1 = 0

        if w < new_x2 and h < new_y2:
            over_x = new_x2 - w
            over_y = new_y2 - h
            over_min = min(over_x, over_y)
            new_x2 -= over_min
            new_y2 -= over_min

        return [int(new_x1), int(new_y1), int(new_x2), int(new_y2)]

    @staticmethod
    def retargeting(delta_out, driving_exp, factor, idxes):
        for idx in idxes:
            # delta_out[0, idx] -= src_exp[0, idx] * factor
            delta_out[0, idx] += driving_exp[0, idx] * factor

    @staticmethod
    def calc_face_region(square, dsize):
        region = copy.deepcopy(square)
        is_changed = False
        if dsize[0] < region[2]:
            region[2] = dsize[0]
            is_changed = True
        if dsize[1] < region[3]:
            region[3] = dsize[1]
            is_changed = True

        return region, is_changed

    @staticmethod
    def expand_img(rgb_img, square):
        crop_trans_m = create_transform_matrix(max(-square[0], 0), max(-square[1], 0), 1, 1)
        new_img = cv2.warpAffine(rgb_img, crop_trans_m, (square[2] - square[0], square[3] - square[1]),
                                        cv2.INTER_LINEAR)
        return new_img

    def prepare_src_image(self, img):
        h, w = img.shape[:2]
        input_shape = [256,256]
        if h != input_shape[0] or w != input_shape[1]:
            if 256 < h: interpolation = cv2.INTER_AREA
            else: interpolation = cv2.INTER_LINEAR
            x = cv2.resize(img, (input_shape[0], input_shape[1]), interpolation = interpolation)
        else:
            x = img.copy()

        if x.ndim == 3:
            x = x[np.newaxis].astype(np.float32) / 255.  # HxWx3 -> 1xHxWx3, normalized to 0~1
        elif x.ndim == 4:
            x = x.astype(np.float32) / 255.  # BxHxWx3, normalized to 0~1
        else:
            raise ValueError(f'img ndim should be 3 or 4: {x.ndim}')
        x = np.clip(x, 0, 1)  # clip to 0~1
        x = torch.from_numpy(x).permute(0, 3, 1, 2)  # 1xHxWx3 -> 1x3xHxW
        x = x.to(self.device)
        return x

    def get_mask_img(self):
        if self.mask_img is None:
            self.mask_img = cv2.imread(MASK_TEMPLATES, cv2.IMREAD_COLOR)
        return self.mask_img

    def crop_face(self, img_rgb, crop_factor):
        crop_region = self.detect_face(img_rgb, crop_factor)
        face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))
        face_img = rgb_crop(img_rgb, face_region)
        if is_changed: face_img = self.expand_img(face_img, crop_region)
        return face_img

    def prepare_source(self, source_image, crop_factor, is_video=False, tracking=False):
        # source_image_np = (source_image * 255).byte().numpy()
        # img_rgb = source_image_np[0]
        print("Prepare source...")
        if len(source_image.shape) <= 3:
            source_image = source_image[np.newaxis, ...]

        psi_list = []
        for img_rgb in source_image:
            if tracking or len(psi_list) == 0:
                crop_region = self.detect_face(img_rgb, crop_factor)
                face_region, is_changed = self.calc_face_region(crop_region, get_rgb_size(img_rgb))

                s_x = (face_region[2] - face_region[0]) / 512.
                s_y = (face_region[3] - face_region[1]) / 512.
                crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s_x, s_y)
                mask_ori = cv2.warpAffine(self.get_mask_img(), crop_trans_m, get_rgb_size(img_rgb), cv2.INTER_LINEAR)
                mask_ori = mask_ori.astype(np.float32) / 255.

                if is_changed:
                    s = (crop_region[2] - crop_region[0]) / 512.
                    crop_trans_m = create_transform_matrix(crop_region[0], crop_region[1], s, s)

            face_img = rgb_crop(img_rgb, face_region)
            if is_changed: face_img = self.expand_img(face_img, crop_region)
            i_s = self.prepare_src_image(face_img)
            x_s_info = self.pipeline.get_kp_info(i_s)
            f_s_user = self.pipeline.extract_feature_3d(i_s)
            x_s_user = self.pipeline.transform_keypoint(x_s_info)
            psi = PreparedSrcImg(img_rgb, crop_trans_m, x_s_info, f_s_user, x_s_user, mask_ori)
            if is_video == False:
                return psi
            psi_list.append(psi)

        return psi_list

    def prepare_driving_video(self, face_images):
        print("Prepare driving video...")
        f_img_np = (face_images * 255).byte().numpy()

        out_list = []
        for f_img in f_img_np:
            i_d = self.prepare_src_image(f_img)
            d_info = self.pipeline.get_kp_info(i_d)
            out_list.append(d_info)

        return out_list

    @staticmethod
    def calc_fe(x_d_new, eyes, eyebrow, wink, pupil_x, pupil_y, mouth, eee, woo, smile,
                rotate_pitch, rotate_yaw, rotate_roll):

        x_d_new[0, 20, 1] += smile * -0.01
        x_d_new[0, 14, 1] += smile * -0.02
        x_d_new[0, 17, 1] += smile * 0.0065
        x_d_new[0, 17, 2] += smile * 0.003
        x_d_new[0, 13, 1] += smile * -0.00275
        x_d_new[0, 16, 1] += smile * -0.00275
        x_d_new[0, 3, 1] += smile * -0.0035
        x_d_new[0, 7, 1] += smile * -0.0035

        x_d_new[0, 19, 1] += mouth * 0.001
        x_d_new[0, 19, 2] += mouth * 0.0001
        x_d_new[0, 17, 1] += mouth * -0.0001
        rotate_pitch -= mouth * 0.05

        x_d_new[0, 20, 2] += eee * -0.001
        x_d_new[0, 20, 1] += eee * -0.001
        #x_d_new[0, 19, 1] += eee * 0.0006
        x_d_new[0, 14, 1] += eee * -0.001

        x_d_new[0, 14, 1] += woo * 0.001
        x_d_new[0, 3, 1] += woo * -0.0005
        x_d_new[0, 7, 1] += woo * -0.0005
        x_d_new[0, 17, 2] += woo * -0.0005

        x_d_new[0, 11, 1] += wink * 0.001
        x_d_new[0, 13, 1] += wink * -0.0003
        x_d_new[0, 17, 0] += wink * 0.0003
        x_d_new[0, 17, 1] += wink * 0.0003
        x_d_new[0, 3, 1] += wink * -0.0003
        rotate_roll -= wink * 0.1
        rotate_yaw -= wink * 0.1

        if 0 < pupil_x:
            x_d_new[0, 11, 0] += pupil_x * 0.0007
            x_d_new[0, 15, 0] += pupil_x * 0.001
        else:
            x_d_new[0, 11, 0] += pupil_x * 0.001
            x_d_new[0, 15, 0] += pupil_x * 0.0007

        x_d_new[0, 11, 1] += pupil_y * -0.001
        x_d_new[0, 15, 1] += pupil_y * -0.001
        eyes -= pupil_y / 2.

        x_d_new[0, 11, 1] += eyes * -0.001
        x_d_new[0, 13, 1] += eyes * 0.0003
        x_d_new[0, 15, 1] += eyes * -0.001
        x_d_new[0, 16, 1] += eyes * 0.0003
        x_d_new[0, 1, 1] += eyes * -0.00025
        x_d_new[0, 2, 1] += eyes * 0.00025

        if 0 < eyebrow:
            x_d_new[0, 1, 1] += eyebrow * 0.001
            x_d_new[0, 2, 1] += eyebrow * -0.001
        else:
            x_d_new[0, 1, 0] += eyebrow * -0.001
            x_d_new[0, 2, 0] += eyebrow * 0.001
            x_d_new[0, 1, 1] += eyebrow * 0.0003
            x_d_new[0, 2, 1] += eyebrow * -0.0003

        return torch.Tensor([rotate_pitch, rotate_yaw, rotate_roll])


class ExpressionSet:
    def __init__(self, erst=None, es=None):
        if es is not None:
            self.e = copy.deepcopy(es.e)  # [:, :, :]
            self.r = copy.deepcopy(es.r)  # [:]
            self.s = copy.deepcopy(es.s)
            self.t = copy.deepcopy(es.t)
        elif erst is not None:
            self.e = erst[0]
            self.r = erst[1]
            self.s = erst[2]
            self.t = erst[3]
        else:
            self.e = torch.from_numpy(np.zeros((1, 21, 3))).float().to(self.get_device())
            self.r = torch.Tensor([0, 0, 0])
            self.s = 0
            self.t = 0

    def div(self, value):
        self.e /= value
        self.r /= value
        self.s /= value
        self.t /= value

    def add(self, other):
        self.e += other.e
        self.r += other.r
        self.s += other.s
        self.t += other.t

    def sub(self, other):
        self.e -= other.e
        self.r -= other.r
        self.s -= other.s
        self.t -= other.t

    def mul(self, value):
        self.e *= value
        self.r *= value
        self.s *= value
        self.t *= value

    @staticmethod
    def get_device():
        if torch.cuda.is_available():
            return "cuda"
        elif torch.backends.mps.is_available():
            return "mps"
        else:
            return "cpu"


def logging_time(original_fn):
    def wrapper_fn(*args, **kwargs):
        start_time = time.time()
        result = original_fn(*args, **kwargs)
        end_time = time.time()
        print("WorkingTime[{}]: {} sec".format(original_fn.__name__, end_time - start_time))
        return result

    return wrapper_fn


def save_exp_data(file_name: str, save_exp: ExpressionSet = None):
    if save_exp is None or not file_name:
        return file_name

    with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), "wb") as f:
        dill.dump(save_exp, f)

    return file_name


def load_exp_data(self, file_name, ratio):
    file_list = [os.path.splitext(file)[0] for file in os.listdir(EXP_OUTPUT_DIR) if file.endswith('.exp')]
    with open(os.path.join(EXP_OUTPUT_DIR, file_name + ".exp"), 'rb') as f:
        es = dill.load(f)
    es.mul(ratio)
    return es


def handle_exp_data(code1, value1, code2, value2, code3, value3, code4, value4, code5, value5, add_exp=None):
    if add_exp is None:
        es = ExpressionSet()
    else:
        es = ExpressionSet(es=add_exp)

    codes = [code1, code2, code3, code4, code5]
    values = [value1, value2, value3, value4, value5]
    for i in range(5):
        idx = int(codes[i] / 10)
        r = codes[i] % 10
        es.e[0, idx, r] += values[i] * 0.001

    return es


def print_exp_data(cut_noise, exp=None):
    if exp is None:
        return exp

    cuted_list = []
    e = exp.exp * 1000
    for idx in range(21):
        for r in range(3):
            a = abs(e[0, idx, r])
            if (cut_noise < a): cuted_list.append((a, e[0, idx, r], idx * 10 + r))

    sorted_list = sorted(cuted_list, reverse=True, key=lambda item: item[0])
    print(f"sorted_list: {[[item[2], round(float(item[1]), 1)] for item in sorted_list]}")
    return exp


class Command:
    def __init__(self,
                 es: ExpressionSet,
                 change,
                 keep):
        self.es = es
        self.change = change
        self.keep = keep