File size: 7,801 Bytes
1b677c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Copyright (C) 2018 Artsiom Sanakoyeu and Dmytro Kotovenko
#
# This file is part of Adaptive Style Transfer
#
# Adaptive Style Transfer is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# Adaptive Style Transfer is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
import scipy.misc
import cv2
from PIL import Image
class Augmentor():
def __init__(self,
crop_size=(256, 256),
scale_augm_prb=0.5, scale_augm_range=0.2,
rotation_augm_prb=0.5, rotation_augm_range=0.15,
hsv_augm_prb=1.0,
hue_augm_shift=0.05,
saturation_augm_shift=0.05, saturation_augm_scale=0.05,
value_augm_shift=0.05, value_augm_scale=0.05,
affine_trnsfm_prb=0.5, affine_trnsfm_range=0.05,
horizontal_flip_prb=0.5,
vertical_flip_prb=0.5):
self.crop_size = crop_size
self.scale_augm_prb = scale_augm_prb
self.scale_augm_range = scale_augm_range
self.rotation_augm_prb = rotation_augm_prb
self.rotation_augm_range = rotation_augm_range
self.hsv_augm_prb = hsv_augm_prb
self.hue_augm_shift = hue_augm_shift
self.saturation_augm_scale = saturation_augm_scale
self.saturation_augm_shift = saturation_augm_shift
self.value_augm_scale = value_augm_scale
self.value_augm_shift = value_augm_shift
self.affine_trnsfm_prb = affine_trnsfm_prb
self.affine_trnsfm_range = affine_trnsfm_range
self.horizontal_flip_prb = horizontal_flip_prb
self.vertical_flip_prb = vertical_flip_prb
def __call__(self, image, is_inference=False):
if is_inference:
return cv2.resize(image, None, fx=self.crop_size[0], fy=self.crop_size[1], interpolation=cv2.INTER_CUBIC)
# If not inference stage apply the pipeline of augmentations.
if self.scale_augm_prb > np.random.uniform():
image = self.scale(image=image,
scale_x=1. + np.random.uniform(low=-self.scale_augm_range, high=-self.scale_augm_range),
scale_y=1. + np.random.uniform(low=-self.scale_augm_range, high=-self.scale_augm_range)
)
rows, cols, ch = image.shape
image = np.pad(array=image, pad_width=[[rows // 4, rows // 4], [cols // 4, cols // 4], [0, 0]], mode='reflect')
if self.rotation_augm_prb > np.random.uniform():
image = self.rotate(image=image,
angle=np.random.uniform(low=-self.rotation_augm_range*90.,
high=self.rotation_augm_range*90.)
)
if self.affine_trnsfm_prb > np.random.uniform():
image = self.affine(image=image,
rng=self.affine_trnsfm_range
)
image = image[(rows // 4):-(rows // 4), (cols // 4):-(cols // 4), :]
# Crop out patch of desired size.
image = self.crop(image=image,
crop_size=self.crop_size
)
if self.hsv_augm_prb > np.random.uniform():
image = self.hsv_transform(image=image,
hue_shift=self.hue_augm_shift,
saturation_shift=self.saturation_augm_shift,
saturation_scale=self.saturation_augm_scale,
value_shift=self.value_augm_shift,
value_scale=self.value_augm_scale)
if self.horizontal_flip_prb > np.random.uniform():
image = self.horizontal_flip(image)
if self.vertical_flip_prb > np.random.uniform():
image = self.vertical_flip(image)
return image
def scale(self, image, scale_x, scale_y):
"""
Args:
image:
scale_x: float positive value. New horizontal scale
scale_y: float positive value. New vertical scale
Returns:
"""
image = cv2.resize(image, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_CUBIC)
return image
def rotate(self, image, angle):
"""
Args:
image: input image
angle: angle of rotation in degrees
Returns:
"""
rows, cols, ch = image.shape
rot_M = cv2.getRotationMatrix2D((cols / 2, rows / 2), angle, 1)
image = cv2.warpAffine(image, rot_M, (cols, rows))
return image
def crop(self, image, crop_size=(256, 256)):
rows, cols, chs = image.shape
x = int(np.random.uniform(low=0, high=max(0, rows - crop_size[0])))
y = int(np.random.uniform(low=0, high=max(0, cols - crop_size[1])))
image = image[x:x+crop_size[0], y:y+crop_size[1], :]
# If the input image was too small to comprise patch of size crop_size,
# resize obtained patch to desired size.
if image.shape[0] < crop_size[0] or image.shape[1] < crop_size[1]:
image = scipy.misc.imresize(arr=image, size=crop_size)
return image
def hsv_transform(self, image,
hue_shift=0.2,
saturation_shift=0.2, saturation_scale=0.2,
value_shift=0.2, value_scale=0.2,
):
image = Image.fromarray(image)
hsv = np.array(image.convert("HSV"), 'float64')
# scale the values to fit between 0 and 1
hsv /= 255.
# do the scalings & shiftings
hsv[..., 0] += np.random.uniform(-hue_shift, hue_shift)
hsv[..., 1] *= np.random.uniform(1. / (1. + saturation_scale), 1. + saturation_scale)
hsv[..., 1] += np.random.uniform(-saturation_shift, saturation_shift)
hsv[..., 2] *= np.random.uniform(1. / (1. + value_scale), 1. + value_scale)
hsv[..., 2] += np.random.uniform(-value_shift, value_shift)
# cut off invalid values
hsv.clip(0.01, 0.99, hsv)
# round to full numbers
hsv = np.uint8(np.round(hsv * 254.))
# convert back to rgb image
return np.asarray(Image.fromarray(hsv, "HSV").convert("RGB"))
def affine(self, image, rng):
rows, cols, ch = image.shape
pts1 = np.float32([[0., 0.], [0., 1.], [1., 0.]])
[x0, y0] = [0. + np.random.uniform(low=-rng, high=rng), 0. + np.random.uniform(low=-rng, high=rng)]
[x1, y1] = [0. + np.random.uniform(low=-rng, high=rng), 1. + np.random.uniform(low=-rng, high=rng)]
[x2, y2] = [1. + np.random.uniform(low=-rng, high=rng), 0. + np.random.uniform(low=-rng, high=rng)]
pts2 = np.float32([[x0, y0], [x1, y1], [x2, y2]])
affine_M = cv2.getAffineTransform(pts1, pts2)
image = cv2.warpAffine(image, affine_M, (cols, rows))
return image
def horizontal_flip(self, image):
return image[:, ::-1, :]
def vertical_flip(self, image):
return image[::-1, :, :]
|