File size: 4,418 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
"""Wrapper around StochasticAI APIs."""
import logging
import time
from typing import Any, Dict, List, Mapping, Optional

import requests
from pydantic import BaseModel, Extra, Field, root_validator

from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)


class StochasticAI(LLM, BaseModel):
    """Wrapper around StochasticAI large language models.

    To use, you should have the environment variable ``STOCHASTICAI_API_KEY``
    set with your API key.

    Example:
        .. code-block:: python

            from langchain.llms import StochasticAI
            stochasticai = StochasticAI(api_url="")
    """

    api_url: str = ""
    """Model name to use."""

    model_kwargs: Dict[str, Any] = Field(default_factory=dict)
    """Holds any model parameters valid for `create` call not
    explicitly specified."""

    stochasticai_api_key: Optional[str] = None

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator(pre=True)
    def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
        """Build extra kwargs from additional params that were passed in."""
        all_required_field_names = {field.alias for field in cls.__fields__.values()}

        extra = values.get("model_kwargs", {})
        for field_name in list(values):
            if field_name not in all_required_field_names:
                if field_name in extra:
                    raise ValueError(f"Found {field_name} supplied twice.")
                logger.warning(
                    f"""{field_name} was transfered to model_kwargs.
                    Please confirm that {field_name} is what you intended."""
                )
                extra[field_name] = values.pop(field_name)
        values["model_kwargs"] = extra
        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key exists in environment."""
        stochasticai_api_key = get_from_dict_or_env(
            values, "stochasticai_api_key", "STOCHASTICAI_API_KEY"
        )
        values["stochasticai_api_key"] = stochasticai_api_key
        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {
            **{"endpoint_url": self.api_url},
            **{"model_kwargs": self.model_kwargs},
        }

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "stochasticai"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call out to StochasticAI's complete endpoint.

        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                response = StochasticAI("Tell me a joke.")
        """
        params = self.model_kwargs or {}
        response_post = requests.post(
            url=self.api_url,
            json={"prompt": prompt, "params": params},
            headers={
                "apiKey": f"{self.stochasticai_api_key}",
                "Accept": "application/json",
                "Content-Type": "application/json",
            },
        )
        response_post.raise_for_status()
        response_post_json = response_post.json()
        completed = False
        while not completed:
            response_get = requests.get(
                url=response_post_json["data"]["responseUrl"],
                headers={
                    "apiKey": f"{self.stochasticai_api_key}",
                    "Accept": "application/json",
                    "Content-Type": "application/json",
                },
            )
            response_get.raise_for_status()
            response_get_json = response_get.json()["data"]
            text = response_get_json.get("completion")
            completed = text is not None
            time.sleep(0.5)
        text = text[0]
        if stop is not None:
            # I believe this is required since the stop tokens
            # are not enforced by the model parameters
            text = enforce_stop_tokens(text, stop)
        return text