File size: 4,308 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""Wrapper around HuggingFace APIs."""
from typing import Any, Dict, List, Mapping, Optional

from pydantic import BaseModel, Extra, root_validator

from langchain.llms.base import LLM
from langchain.llms.utils import enforce_stop_tokens
from langchain.utils import get_from_dict_or_env

DEFAULT_REPO_ID = "gpt2"
VALID_TASKS = ("text2text-generation", "text-generation")


class HuggingFaceHub(LLM, BaseModel):
    """Wrapper around HuggingFaceHub  models.

    To use, you should have the ``huggingface_hub`` python package installed, and the
    environment variable ``HUGGINGFACEHUB_API_TOKEN`` set with your API token, or pass
    it as a named parameter to the constructor.

    Only supports `text-generation` and `text2text-generation` for now.

    Example:
        .. code-block:: python

            from langchain.llms import HuggingFaceHub
            hf = HuggingFaceHub(repo_id="gpt2", huggingfacehub_api_token="my-api-key")
    """

    client: Any  #: :meta private:
    repo_id: str = DEFAULT_REPO_ID
    """Model name to use."""
    task: Optional[str] = None
    """Task to call the model with. Should be a task that returns `generated_text`."""
    model_kwargs: Optional[dict] = None
    """Key word arguments to pass to the model."""

    huggingfacehub_api_token: Optional[str] = None

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        huggingfacehub_api_token = get_from_dict_or_env(
            values, "huggingfacehub_api_token", "HUGGINGFACEHUB_API_TOKEN"
        )
        try:
            from huggingface_hub.inference_api import InferenceApi

            repo_id = values["repo_id"]
            client = InferenceApi(
                repo_id=repo_id,
                token=huggingfacehub_api_token,
                task=values.get("task"),
            )
            if client.task not in VALID_TASKS:
                raise ValueError(
                    f"Got invalid task {client.task}, "
                    f"currently only {VALID_TASKS} are supported"
                )
            values["client"] = client
        except ImportError:
            raise ValueError(
                "Could not import huggingface_hub python package. "
                "Please it install it with `pip install huggingface_hub`."
            )
        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        _model_kwargs = self.model_kwargs or {}
        return {
            **{"repo_id": self.repo_id, "task": self.task},
            **{"model_kwargs": _model_kwargs},
        }

    @property
    def _llm_type(self) -> str:
        """Return type of llm."""
        return "huggingface_hub"

    def _call(self, prompt: str, stop: Optional[List[str]] = None) -> str:
        """Call out to HuggingFace Hub's inference endpoint.

        Args:
            prompt: The prompt to pass into the model.
            stop: Optional list of stop words to use when generating.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                response = hf("Tell me a joke.")
        """
        _model_kwargs = self.model_kwargs or {}
        response = self.client(inputs=prompt, params=_model_kwargs)
        if "error" in response:
            raise ValueError(f"Error raised by inference API: {response['error']}")
        if self.client.task == "text-generation":
            # Text generation return includes the starter text.
            text = response[0]["generated_text"][len(prompt) :]
        elif self.client.task == "text2text-generation":
            text = response[0]["generated_text"]
        else:
            raise ValueError(
                f"Got invalid task {self.client.task}, "
                f"currently only {VALID_TASKS} are supported"
            )
        if stop is not None:
            # This is a bit hacky, but I can't figure out a better way to enforce
            # stop tokens when making calls to huggingface_hub.
            text = enforce_stop_tokens(text, stop)
        return text