File size: 10,397 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""Wrapper around OpenAI embedding models."""
from __future__ import annotations

import logging
from typing import Any, Callable, Dict, List, Optional

import numpy as np
from pydantic import BaseModel, Extra, root_validator
from tenacity import (
    before_sleep_log,
    retry,
    retry_if_exception_type,
    stop_after_attempt,
    wait_exponential,
)

from langchain.embeddings.base import Embeddings
from langchain.utils import get_from_dict_or_env

logger = logging.getLogger(__name__)


def _create_retry_decorator(embeddings: OpenAIEmbeddings) -> Callable[[Any], Any]:
    import openai

    min_seconds = 4
    max_seconds = 10
    # Wait 2^x * 1 second between each retry starting with
    # 4 seconds, then up to 10 seconds, then 10 seconds afterwards
    return retry(
        reraise=True,
        stop=stop_after_attempt(embeddings.max_retries),
        wait=wait_exponential(multiplier=1, min=min_seconds, max=max_seconds),
        retry=(
            retry_if_exception_type(openai.error.Timeout)
            | retry_if_exception_type(openai.error.APIError)
            | retry_if_exception_type(openai.error.APIConnectionError)
            | retry_if_exception_type(openai.error.RateLimitError)
            | retry_if_exception_type(openai.error.ServiceUnavailableError)
        ),
        before_sleep=before_sleep_log(logger, logging.WARNING),
    )


def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
    """Use tenacity to retry the completion call."""
    retry_decorator = _create_retry_decorator(embeddings)

    @retry_decorator
    def _completion_with_retry(**kwargs: Any) -> Any:
        return embeddings.client.create(**kwargs)

    return _completion_with_retry(**kwargs)


class OpenAIEmbeddings(BaseModel, Embeddings):
    """Wrapper around OpenAI embedding models.

    To use, you should have the ``openai`` python package installed, and the
    environment variable ``OPENAI_API_KEY`` set with your API key or pass it
    as a named parameter to the constructor.

    Example:
        .. code-block:: python

            from langchain.embeddings import OpenAIEmbeddings
            openai = OpenAIEmbeddings(openai_api_key="my-api-key")

    In order to use the library with Microsoft Azure endpoints, you need to set
    the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and optionally and
    API_VERSION.
    The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
    the properties of your endpoint.
    In addition, the deployment name must be passed as the model parameter.

    Example:
        .. code-block:: python

            import os
            os.environ["OPENAI_API_TYPE"] = "azure"
            os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
            os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"

            from langchain.embeddings.openai import OpenAIEmbeddings
            embeddings = OpenAIEmbeddings(model="your-embeddings-deployment-name")
            text = "This is a test query."
            query_result = embeddings.embed_query(text)

    """

    client: Any  #: :meta private:
    model: str = "text-embedding-ada-002"

    # TODO: deprecate these two in favor of model
    #  https://community.openai.com/t/api-update-engines-models/18597
    #  https://github.com/openai/openai-python/issues/132
    document_model_name: str = "text-embedding-ada-002"
    query_model_name: str = "text-embedding-ada-002"
    embedding_ctx_length: int = -1
    openai_api_key: Optional[str] = None
    chunk_size: int = 1000
    """Maximum number of texts to embed in each batch"""
    max_retries: int = 6
    """Maximum number of retries to make when generating."""

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    # TODO: deprecate this
    @root_validator(pre=True)
    def get_model_names(cls, values: Dict) -> Dict:
        # model_name is for first generation, and model is for second generation.
        # Both are not allowed together.
        if "model_name" in values and "model" in values:
            raise ValueError(
                "Both `model_name` and `model` were provided, "
                "but only one should be."
            )

        """Get model names from just old model name."""
        if "model_name" in values:
            if "document_model_name" in values:
                raise ValueError(
                    "Both `model_name` and `document_model_name` were provided, "
                    "but only one should be."
                )
            if "query_model_name" in values:
                raise ValueError(
                    "Both `model_name` and `query_model_name` were provided, "
                    "but only one should be."
                )
            model_name = values.pop("model_name")
            values["document_model_name"] = f"text-search-{model_name}-doc-001"
            values["query_model_name"] = f"text-search-{model_name}-query-001"

        # Set document/query model names from model parameter.
        if "model" in values:
            if "document_model_name" in values:
                raise ValueError(
                    "Both `model` and `document_model_name` were provided, "
                    "but only one should be."
                )
            if "query_model_name" in values:
                raise ValueError(
                    "Both `model` and `query_model_name` were provided, "
                    "but only one should be."
                )
            model = values.get("model")
            values["document_model_name"] = model
            values["query_model_name"] = model

        return values

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        openai_api_key = get_from_dict_or_env(
            values, "openai_api_key", "OPENAI_API_KEY"
        )
        try:
            import openai

            openai.api_key = openai_api_key
            values["client"] = openai.Embedding
        except ImportError:
            raise ValueError(
                "Could not import openai python package. "
                "Please it install it with `pip install openai`."
            )
        return values

    # please refer to
    # https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
    def _get_len_safe_embeddings(
        self, texts: List[str], *, engine: str, chunk_size: Optional[int] = None
    ) -> List[List[float]]:
        embeddings: List[List[float]] = [[] for i in range(len(texts))]
        try:
            import tiktoken

            tokens = []
            indices = []
            encoding = tiktoken.model.encoding_for_model(self.document_model_name)
            for i, text in enumerate(texts):
                # replace newlines, which can negatively affect performance.
                text = text.replace("\n", " ")
                token = encoding.encode(text)
                for j in range(0, len(token), self.embedding_ctx_length):
                    tokens += [token[j : j + self.embedding_ctx_length]]
                    indices += [i]

            batched_embeddings = []
            _chunk_size = chunk_size or self.chunk_size
            for i in range(0, len(tokens), _chunk_size):
                response = embed_with_retry(
                    self,
                    input=tokens[i : i + _chunk_size],
                    engine=self.document_model_name,
                )
                batched_embeddings += [r["embedding"] for r in response["data"]]

            results: List[List[List[float]]] = [[] for i in range(len(texts))]
            lens: List[List[int]] = [[] for i in range(len(texts))]
            for i in range(len(indices)):
                results[indices[i]].append(batched_embeddings[i])
                lens[indices[i]].append(len(batched_embeddings[i]))

            for i in range(len(texts)):
                average = np.average(results[i], axis=0, weights=lens[i])
                embeddings[i] = (average / np.linalg.norm(average)).tolist()

            return embeddings

        except ImportError:
            raise ValueError(
                "Could not import tiktoken python package. "
                "This is needed in order to for OpenAIEmbeddings. "
                "Please it install it with `pip install tiktoken`."
            )

    def _embedding_func(self, text: str, *, engine: str) -> List[float]:
        """Call out to OpenAI's embedding endpoint."""
        # replace newlines, which can negatively affect performance.
        if self.embedding_ctx_length > 0:
            return self._get_len_safe_embeddings([text], engine=engine)[0]
        else:
            text = text.replace("\n", " ")
            return embed_with_retry(self, input=[text], engine=engine)["data"][0][
                "embedding"
            ]

    def embed_documents(
        self, texts: List[str], chunk_size: Optional[int] = 0
    ) -> List[List[float]]:
        """Call out to OpenAI's embedding endpoint for embedding search docs.

        Args:
            texts: The list of texts to embed.
            chunk_size: The chunk size of embeddings. If None, will use the chunk size
                specified by the class.

        Returns:
            List of embeddings, one for each text.
        """
        # handle large batches of texts
        if self.embedding_ctx_length > 0:
            return self._get_len_safe_embeddings(texts, engine=self.document_model_name)
        else:
            results = []
            _chunk_size = chunk_size or self.chunk_size
            for i in range(0, len(texts), _chunk_size):
                response = embed_with_retry(
                    self,
                    input=texts[i : i + _chunk_size],
                    engine=self.document_model_name,
                )
                results += [r["embedding"] for r in response["data"]]
            return results

    def embed_query(self, text: str) -> List[float]:
        """Call out to OpenAI's embedding endpoint for embedding query text.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        embedding = self._embedding_func(text, engine=self.query_model_name)
        return embedding