File size: 3,459 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
"""Azure OpenAI chat wrapper."""
from __future__ import annotations

import logging
from typing import Any, Dict

from pydantic import root_validator

from langchain.chat_models.openai import (
    ChatOpenAI,
)
from langchain.utils import get_from_dict_or_env

logger = logging.getLogger(__file__)


class AzureChatOpenAI(ChatOpenAI):
    """Wrapper around Azure OpenAI Chat Completion API. To use this class you
    must have a deployed model on Azure OpenAI. Use `deployment_name` in the
    constructor to refer to the "Model deployment name" in the Azure portal.

    In addition, you should have the ``openai`` python package installed, and the
    following environment variables set or passed in constructor in lower case:
    - ``OPENAI_API_TYPE`` (default: ``azure``)
    - ``OPENAI_API_KEY``
    - ``OPENAI_API_BASE``
    - ``OPENAI_API_VERSION``

    For exmaple, if you have `gpt-35-turbo` deployed, with the deployment name
    `35-turbo-dev`, the constructor should look like:

    .. code-block:: python
        AzureChatOpenAI(
            deployment_name="35-turbo-dev",
            openai_api_version="2023-03-15-preview",
        )

    Be aware the API version may change.

    Any parameters that are valid to be passed to the openai.create call can be passed
    in, even if not explicitly saved on this class.
    """

    deployment_name: str = ""
    openai_api_type: str = "azure"
    openai_api_base: str = ""
    openai_api_version: str = ""
    openai_api_key: str = ""

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""
        openai_api_key = get_from_dict_or_env(
            values,
            "openai_api_key",
            "OPENAI_API_KEY",
        )
        openai_api_base = get_from_dict_or_env(
            values,
            "openai_api_base",
            "OPENAI_API_BASE",
        )
        openai_api_version = get_from_dict_or_env(
            values,
            "openai_api_version",
            "OPENAI_API_VERSION",
        )
        openai_api_type = get_from_dict_or_env(
            values,
            "openai_api_type",
            "OPENAI_API_TYPE",
        )
        try:
            import openai

            openai.api_type = openai_api_type
            openai.api_base = openai_api_base
            openai.api_version = openai_api_version
            openai.api_key = openai_api_key
        except ImportError:
            raise ValueError(
                "Could not import openai python package. "
                "Please it install it with `pip install openai`."
            )
        try:
            values["client"] = openai.ChatCompletion
        except AttributeError:
            raise ValueError(
                "`openai` has no `ChatCompletion` attribute, this is likely "
                "due to an old version of the openai package. Try upgrading it "
                "with `pip install --upgrade openai`."
            )
        if values["n"] < 1:
            raise ValueError("n must be at least 1.")
        if values["n"] > 1 and values["streaming"]:
            raise ValueError("n must be 1 when streaming.")
        return values

    @property
    def _default_params(self) -> Dict[str, Any]:
        """Get the default parameters for calling OpenAI API."""
        return {
            **super()._default_params,
            "engine": self.deployment_name,
        }