File size: 4,058 Bytes
58d33f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import json
from typing import Any, List, Optional, Sequence, Tuple

from langchain.agents.agent import Agent
from langchain.agents.chat.prompt import FORMAT_INSTRUCTIONS, PREFIX, SUFFIX
from langchain.callbacks.base import BaseCallbackManager
from langchain.chains.llm import LLMChain
from langchain.prompts.base import BasePromptTemplate
from langchain.prompts.chat import (
    ChatPromptTemplate,
    HumanMessagePromptTemplate,
    SystemMessagePromptTemplate,
)
from langchain.schema import AgentAction, BaseLanguageModel
from langchain.tools import BaseTool

FINAL_ANSWER_ACTION = "Final Answer:"


class ChatAgent(Agent):
    @property
    def observation_prefix(self) -> str:
        """Prefix to append the observation with."""
        return "Observation: "

    @property
    def llm_prefix(self) -> str:
        """Prefix to append the llm call with."""
        return "Thought:"

    def _construct_scratchpad(
        self, intermediate_steps: List[Tuple[AgentAction, str]]
    ) -> str:
        agent_scratchpad = super()._construct_scratchpad(intermediate_steps)
        if not isinstance(agent_scratchpad, str):
            raise ValueError("agent_scratchpad should be of type string.")
        if agent_scratchpad:
            return (
                f"This was your previous work "
                f"(but I haven't seen any of it! I only see what "
                f"you return as final answer):\n{agent_scratchpad}"
            )
        else:
            return agent_scratchpad

    def _extract_tool_and_input(self, text: str) -> Optional[Tuple[str, str]]:
        if FINAL_ANSWER_ACTION in text:
            return "Final Answer", text.split(FINAL_ANSWER_ACTION)[-1].strip()
        try:
            _, action, _ = text.split("```")
            response = json.loads(action.strip())
            return response["action"], response["action_input"]

        except Exception:
            raise ValueError(f"Could not parse LLM output: {text}")

    @property
    def _stop(self) -> List[str]:
        return ["Observation:"]

    @classmethod
    def create_prompt(
        cls,
        tools: Sequence[BaseTool],
        prefix: str = PREFIX,
        suffix: str = SUFFIX,
        format_instructions: str = FORMAT_INSTRUCTIONS,
        input_variables: Optional[List[str]] = None,
    ) -> BasePromptTemplate:
        tool_strings = "\n".join([f"{tool.name}: {tool.description}" for tool in tools])
        tool_names = ", ".join([tool.name for tool in tools])
        format_instructions = format_instructions.format(tool_names=tool_names)
        template = "\n\n".join([prefix, tool_strings, format_instructions, suffix])
        messages = [
            SystemMessagePromptTemplate.from_template(template),
            HumanMessagePromptTemplate.from_template("{input}\n\n{agent_scratchpad}"),
        ]
        if input_variables is None:
            input_variables = ["input", "agent_scratchpad"]
        return ChatPromptTemplate(input_variables=input_variables, messages=messages)

    @classmethod
    def from_llm_and_tools(
        cls,
        llm: BaseLanguageModel,
        tools: Sequence[BaseTool],
        callback_manager: Optional[BaseCallbackManager] = None,
        prefix: str = PREFIX,
        suffix: str = SUFFIX,
        format_instructions: str = FORMAT_INSTRUCTIONS,
        input_variables: Optional[List[str]] = None,
        **kwargs: Any,
    ) -> Agent:
        """Construct an agent from an LLM and tools."""
        cls._validate_tools(tools)
        prompt = cls.create_prompt(
            tools,
            prefix=prefix,
            suffix=suffix,
            format_instructions=format_instructions,
            input_variables=input_variables,
        )
        llm_chain = LLMChain(
            llm=llm,
            prompt=prompt,
            callback_manager=callback_manager,
        )
        tool_names = [tool.name for tool in tools]
        return cls(llm_chain=llm_chain, allowed_tools=tool_names, **kwargs)

    @property
    def _agent_type(self) -> str:
        raise ValueError