Spaces:
Running
on
Zero
Running
on
Zero
File size: 25,921 Bytes
9e15541 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 |
"""
NeRF differentiable renderer.
References:
https://github.com/bmild/nerf
https://github.com/kwea123/nerf_pl
"""
import torch
import torch.autograd.profiler as profiler
from dotmap import DotMap
class _RenderWrapper(torch.nn.Module):
def __init__(self, net, renderer, simple_output):
super().__init__()
self.net = net
self.renderer = renderer
self.simple_output = simple_output
def forward(
self,
rays,
want_weights=False,
want_alphas=False,
want_z_samps=False,
want_rgb_samps=False,
sample_from_dist=None,
):
if rays.shape[0] == 0:
return (
torch.zeros(0, 3, device=rays.device),
torch.zeros(0, device=rays.device),
)
outputs = self.renderer(
self.net,
rays,
want_weights=want_weights and not self.simple_output,
want_alphas=want_alphas and not self.simple_output,
want_z_samps=want_z_samps and not self.simple_output,
want_rgb_samps=want_rgb_samps and not self.simple_output,
sample_from_dist=sample_from_dist,
)
if self.simple_output:
if self.renderer.using_fine:
rgb = outputs.fine.rgb
depth = outputs.fine.depth
else:
rgb = outputs.coarse.rgb
depth = outputs.coarse.depth
return rgb, depth
else:
# Make DotMap to dict to support DataParallel
return outputs.toDict()
class NeRFRenderer(torch.nn.Module):
"""
NeRF differentiable renderer
:param n_coarse number of coarse (binned uniform) samples
:param n_fine number of fine (importance) samples
:param n_fine_depth number of expected depth samples
:param noise_std noise to add to sigma. We do not use it
:param depth_std noise for depth samples
:param eval_batch_size ray batch size for evaluation
:param white_bkgd if true, background color is white; else black
:param lindisp if to use samples linear in disparity instead of distance
:param sched ray sampling schedule. list containing 3 lists of equal length.
sched[0] is list of iteration numbers,
sched[1] is list of coarse sample numbers,
sched[2] is list of fine sample numbers
"""
def __init__(
self,
n_coarse=128,
n_fine=0,
n_fine_depth=0,
noise_std=0.0,
depth_std=0.01,
eval_batch_size=100000,
white_bkgd=False,
lindisp=False,
sched=None, # ray sampling schedule for coarse and fine rays
hard_alpha_cap=False,
render_mode="volumetric",
surface_sigmoid_scale=.1,
render_flow=False,
normalize_dino=False,
):
super().__init__()
self.n_coarse, self.n_fine = n_coarse, n_fine
self.n_fine_depth = n_fine_depth
self.noise_std = noise_std
self.depth_std = depth_std
self.eval_batch_size = eval_batch_size
self.white_bkgd = white_bkgd
self.lindisp = lindisp
if lindisp:
print("Using linear displacement rays")
self.using_fine = n_fine > 0
self.sched = sched
if sched is not None and len(sched) == 0:
self.sched = None
self.register_buffer(
"iter_idx", torch.tensor(0, dtype=torch.long), persistent=True
)
self.register_buffer(
"last_sched", torch.tensor(0, dtype=torch.long), persistent=True
)
self.hard_alpha_cap = hard_alpha_cap
assert render_mode in ("volumetric", "surface", "neus")
self.render_mode = render_mode
self.only_surface_color = (self.render_mode == "surface")
self.surface_sigmoid_scale = surface_sigmoid_scale
self.render_flow = render_flow
self.normalize_dino = normalize_dino
def sample_coarse(self, rays):
"""
Stratified sampling. Note this is different from original NeRF slightly.
:param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
:return (B, Kc)
"""
device = rays.device
near, far = rays[:, 6:7], rays[:, 7:8] # (B, 1)
step = 1.0 / self.n_coarse
B = rays.shape[0]
z_steps = torch.linspace(0, 1 - step, self.n_coarse, device=device) # (Kc)
z_steps = z_steps.unsqueeze(0).repeat(B, 1) # (B, Kc)
z_steps += torch.rand_like(z_steps) * step
if not self.lindisp: # Use linear sampling in depth space
return near * (1 - z_steps) + far * z_steps # (B, Kf)
else: # Use linear sampling in disparity space
return 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps) # (B, Kf)
# Use linear sampling in depth space
return near * (1 - z_steps) + far * z_steps # (B, Kc)
def sample_coarse_from_dist(self, rays, weights, z_samp):
device = rays.device
B = rays.shape[0]
num_bins = weights.shape[-1]
num_samples = self.n_coarse
weights = weights.detach() + 1e-5 # Prevent division by zero
pdf = weights / torch.sum(weights, -1, keepdim=True) # (B, Kc)
cdf = torch.cumsum(pdf, -1) # (B, Kc)
cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf], -1) # (B, Kc+1)
u = torch.rand(B, num_samples, dtype=torch.float32, device=device) # (B, Kf)
interval_ids = torch.searchsorted(cdf, u, right=True) - 1 # (B, Kf)
interval_ids = torch.clamp(interval_ids, 0, num_samples - 1)
interval_interp = torch.rand_like(interval_ids, dtype=torch.float32)
# z_samps describe the centers of the respective histogram bins. Therefore, we have to extend them to the left and right
if self.lindisp:
z_samp = 1 / z_samp
centers = 0.5 * (z_samp[:, 1:] + z_samp[:, :-1])
interval_borders = torch.cat((z_samp[:, :1], centers, z_samp[:, -1:]), dim=-1)
left_border = torch.gather(interval_borders, dim=-1, index=interval_ids)
right_border = torch.gather(interval_borders, dim=-1, index=interval_ids + 1)
z_samp_new = (
left_border * (1 - interval_interp) + right_border * interval_interp
)
if self.lindisp:
z_samp_new = 1 / z_samp_new
assert not torch.any(torch.isnan(z_samp_new))
return z_samp_new
def sample_fine(self, rays, weights):
"""min
Weighted stratified (importance) sample
:param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
:param weights (B, Kc)
:return (B, Kf-Kfd)
"""
device = rays.device
B = rays.shape[0]
weights = weights.detach() + 1e-5 # Prevent division by zero
pdf = weights / torch.sum(weights, -1, keepdim=True) # (B, Kc)
cdf = torch.cumsum(pdf, -1) # (B, Kc)
cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf], -1) # (B, Kc+1)
u = torch.rand(
B, self.n_fine - self.n_fine_depth, dtype=torch.float32, device=device
) # (B, Kf)
inds = torch.searchsorted(cdf, u, right=True).float() - 1.0 # (B, Kf)
inds = torch.clamp_min(inds, 0.0)
z_steps = (inds + torch.rand_like(inds)) / self.n_coarse # (B, Kf)
near, far = rays[:, 6:7], rays[:, 7:8] # (B, 1)
if not self.lindisp: # Use linear sampling in depth space
z_samp = near * (1 - z_steps) + far * z_steps # (B, Kf)
else: # Use linear sampling in disparity space
z_samp = 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps) # (B, Kf)
assert not torch.any(torch.isnan(z_samp))
return z_samp
def sample_fine_depth(self, rays, depth):
"""
Sample around specified depth
:param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
:param depth (B)
:return (B, Kfd)
"""
z_samp = depth.unsqueeze(1).repeat((1, self.n_fine_depth))
z_samp += torch.randn_like(z_samp) * self.depth_std
# Clamp does not support tensor bounds
z_samp = torch.max(torch.min(z_samp, rays[:, 7:8]), rays[:, 6:7])
assert not torch.any(torch.isnan(z_samp))
return z_samp
def composite(self, model, rays, z_samp, coarse=True, sb=0):
"""
Render RGB and depth for each ray using NeRF alpha-compositing formula,
given sampled positions along each ray (see sample_*)
:param model should return (B, (r, g, b, sigma)) when called with (B, (x, y, z))
should also support 'coarse' boolean argument
:param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
:param z_samp z positions sampled for each ray (B, K)
:param coarse whether to evaluate using coarse NeRF
:param sb super-batch dimension; 0 = disable
:return weights (B, K), rgb (B, 3), depth (B)
"""
with profiler.record_function("renderer_composite"):
B, K = z_samp.shape
r_dim = rays.shape[-1]
deltas = z_samp[:, 1:] - z_samp[:, :-1] # (B, K-1)
delta_inf = 1e10 * torch.ones_like(deltas[:, :1]) # infty (B, 1)
# delta_inf = rays[:, -1:] - z_samp[:, -1:]
deltas = torch.cat([deltas, delta_inf], -1) # (B, K)
# (B, K, 3)
points = rays[:, None, :3] + z_samp.unsqueeze(2) * rays[:, None, 3:6]
points = points.reshape(-1, 3) # (B*K, 3)
if r_dim > 8:
ray_info = rays[:, None, 8:].expand(-1, K, -1)
else:
ray_info = None
if hasattr(model, "use_viewdirs"):
use_viewdirs = model.use_viewdirs
else:
use_viewdirs = None
viewdirs_all = []
rgbs_all, invalid_all, sigmas_all, extras_all, state_dicts_all = [], [], [], [], []
if sb > 0:
points = points.reshape(
sb, -1, 3
) # (SB, B'*K, 3) B' is real ray batch size
if ray_info is not None:
ray_info = ray_info.reshape(sb, -1, ray_info.shape[-1])
eval_batch_dim = 1
eval_batch_size = (self.eval_batch_size - 1) // sb + 1
else:
eval_batch_size = self.eval_batch_size
eval_batch_dim = 0
split_points = torch.split(points, eval_batch_size, dim=eval_batch_dim)
if ray_info is not None:
split_ray_infos = torch.split(ray_info, eval_batch_size, dim=eval_batch_dim)
else:
split_ray_infos = [None for _ in split_points]
if use_viewdirs:
dim1 = K
viewdirs = rays[:, None, 3:6].expand(-1, dim1, -1)
if sb > 0:
viewdirs = viewdirs.reshape(sb, -1, 3) # (SB, B'*K, 3)
else:
viewdirs = viewdirs.reshape(-1, 3) # (B*K, 3)
split_viewdirs = torch.split(
viewdirs, eval_batch_size, dim=eval_batch_dim
)
for i, pnts in enumerate(split_points):
dirs = split_viewdirs[i]
infos = split_ray_infos[i]
rgbs, invalid, sigmas, extras, state_dict = model(
pnts, coarse=coarse, viewdirs=dirs, only_density=self.only_surface_color, ray_info=ray_info, render_flow=self.render_flow
)
rgbs_all.append(rgbs)
invalid_all.append(invalid)
sigmas_all.append(sigmas)
extras_all.append(extras)
viewdirs_all.append(dirs)
if state_dict is not None:
state_dicts_all.append(state_dict)
else:
for i, pnts in enumerate(split_points):
infos = split_ray_infos[i]
rgbs, invalid, sigmas, extras, state_dict = model(pnts, coarse=coarse, only_density=self.only_surface_color, ray_info=infos, render_flow=self.render_flow)
rgbs_all.append(rgbs)
invalid_all.append(invalid)
sigmas_all.append(sigmas)
extras_all.append(extras)
if state_dict is not None:
state_dicts_all.append(state_dict)
points, viewdirs = None, None
# (B*K, 4) OR (SB, B'*K, 4)
if not self.only_surface_color:
rgbs = torch.cat(rgbs_all, dim=eval_batch_dim)
else:
rgbs = None
invalid = torch.cat(invalid_all, dim=eval_batch_dim)
sigmas = torch.cat(sigmas_all, dim=eval_batch_dim)
if not extras_all[0] is None:
extras = torch.cat(extras_all, dim=eval_batch_dim)
else:
extras = None
deltas = deltas.float()
sigmas = sigmas.float()
if (
state_dicts_all is not None and len(state_dicts_all) != 0
): ## not empty in a list
state_dicts = {
key: torch.cat(
[state_dicts[key] for state_dicts in state_dicts_all],
dim=eval_batch_dim,
)
for key in state_dicts_all[0].keys()
}
else:
state_dicts = None
if rgbs is not None:
rgbs = rgbs.reshape(B, K, -1) # (B, K, 4 or 5)
invalid = invalid.reshape(B, K, -1)
sigmas = sigmas.reshape(B, K)
if extras is not None:
extras = extras.reshape(B, K, -1)
if state_dicts is not None:
state_dicts = {
key: value.reshape(B, K, *value.shape[2:])
for key, value in state_dicts.items()
} # BxKx... (BxKxn_viewsx...)
if self.training and self.noise_std > 0.0:
sigmas = sigmas + torch.randn_like(sigmas) * self.noise_std
alphas = 1 - torch.exp(
-deltas.abs() * torch.relu(sigmas)
) # (B, K) (delta should be positive anyways)
if self.hard_alpha_cap:
alphas[:, -1] = 1
deltas, sigmas = None, None
alphas_shifted = torch.cat(
[torch.ones_like(alphas[:, :1]), 1 - alphas + 1e-10], -1
) # (B, K+1) = [1, a1, a2, ...]
T = torch.cumprod(alphas_shifted, -1) # (B)
weights = alphas * T[:, :-1] # (B, K)
# alphas = None
alphas_shifted = None
depth_final = torch.sum(weights * z_samp, -1) # (B)
state_dicts["dino_features"] = torch.sum(state_dicts["dino_features"].mul_(weights.unsqueeze(-1)), -2)
if self.render_mode == "neus":
# dist_from_surf = z_samp - depth_final[..., None]
indices = torch.arange(0, weights.shape[-1], device=weights.device, dtype=weights.dtype).unsqueeze(0)
surface_index = torch.sum(weights * indices, dim=-1, keepdim=True)
dist_from_surf = surface_index - indices
weights = torch.exp(-.5 * (dist_from_surf * self.surface_sigmoid_scale) ** 2)
weights = weights / torch.sum(weights, dim=-1, keepdim=True)
if not self.only_surface_color:
rgb_final = torch.sum(weights.unsqueeze(-1) * rgbs, -2) # (B, 3)
else:
surface_points = rays[:, None, :3] + depth_final[:, None, None] * rays[:, None, 3:6]
surface_points = surface_points.reshape(sb, -1, 3)
if ray_info is not None:
ray_info = ray_info.reshape(sb, -1, K, ray_info.shape[-1])[:, :, 0, :]
rgb_final, invalid_colors = model.sample_colors(surface_points, ray_info=ray_info, render_flow=self.render_flow)
rgb_final = rgb_final.permute(0, 2, 1, 3).reshape(B, -1)
invalid_colors = invalid_colors.permute(0, 2, 1, 3).reshape(B, 1, -1)
invalid = ((invalid > .5) | invalid_colors).float()
if self.white_bkgd:
# White background
pix_alpha = weights.sum(dim=1) # (B), pixel alpha
rgb_final = rgb_final + 1 - pix_alpha.unsqueeze(-1) # (B, 3)
if extras is not None:
extras_final = torch.sum(weights.unsqueeze(-1) * extras, -2) # (B, extras)
else:
extras_final = None
for name, x in [("weights", weights), ("rgb_final", rgb_final), ("depth_final", depth_final), ("alphas", alphas), ("invalid", invalid), ("z_samp", z_samp)]:
if torch.any(torch.isnan(x)):
print(f"Detected NaN in {name} ({x.dtype}):")
print(x)
exit()
if ray_info is not None:
ray_info = rays[:, None, 8:]
# return (weights, rgb_final, depth_final, alphas, invalid, z_samp, rgbs, viewdirs)
return (
weights,
rgb_final,
depth_final,
alphas,
invalid,
z_samp,
rgbs,
ray_info,
extras_final,
state_dicts,
)
def forward(
self,
model,
rays,
want_weights=False,
want_alphas=False,
want_z_samps=False,
want_rgb_samps=False,
sample_from_dist=None,
):
"""
:model nerf model, should return (SB, B, (r, g, b, sigma))
when called with (SB, B, (x, y, z)), for multi-object:
SB = 'super-batch' = size of object batch,
B = size of per-object ray batch.
Should also support 'coarse' boolean argument for coarse NeRF.
:param rays ray spec [origins (3), directions (3), near (1), far (1)] (SB, B, 8)
:param want_weights if true, returns compositing weights (SB, B, K)
:return render dict
"""
with profiler.record_function("renderer_forward"):
if self.sched is not None and self.last_sched.item() > 0:
self.n_coarse = self.sched[1][self.last_sched.item() - 1]
self.n_fine = self.sched[2][self.last_sched.item() - 1]
assert len(rays.shape) == 3
superbatch_size = rays.shape[0]
r_dim = rays.shape[-1]
rays = rays.reshape(-1, r_dim) # (SB * B, 8)
if sample_from_dist is None:
z_coarse = self.sample_coarse(rays) # (B, Kc)
else:
prop_weights, prop_z_samp = sample_from_dist
n_samples = prop_weights.shape[-1]
prop_weights = prop_weights.reshape(-1, n_samples)
prop_z_samp = prop_z_samp.reshape(-1, n_samples)
z_coarse = self.sample_coarse_from_dist(rays, prop_weights, prop_z_samp)
z_coarse, _ = torch.sort(z_coarse, dim=-1)
coarse_composite = self.composite(
model,
rays,
z_coarse,
coarse=True,
sb=superbatch_size,
)
outputs = DotMap(
coarse=self._format_outputs(
coarse_composite,
superbatch_size,
want_weights=want_weights,
want_alphas=want_alphas,
want_z_samps=want_z_samps,
want_rgb_samps=want_rgb_samps,
),
)
outputs.state_dict = coarse_composite[-1]
if self.using_fine:
all_samps = [z_coarse]
if self.n_fine - self.n_fine_depth > 0:
all_samps.append(
self.sample_fine(rays, coarse_composite[0].detach())
) # (B, Kf - Kfd)
if self.n_fine_depth > 0:
all_samps.append(
self.sample_fine_depth(rays, coarse_composite[2])
) # (B, Kfd)
z_combine = torch.cat(all_samps, dim=-1) # (B, Kc + Kf)
z_combine_sorted, argsort = torch.sort(z_combine, dim=-1)
fine_composite = self.composite(
model,
rays,
z_combine_sorted,
coarse=False,
sb=superbatch_size,
)
outputs.fine = self._format_outputs(
fine_composite,
superbatch_size,
want_weights=want_weights,
want_alphas=want_alphas,
want_z_samps=want_z_samps,
want_rgb_samps=want_rgb_samps,
)
return outputs
def _format_outputs(
self,
rendered_outputs,
superbatch_size,
want_weights=False,
want_alphas=False,
want_z_samps=False,
want_rgb_samps=False,
):
(
weights,
rgb_final,
depth,
alphas,
invalid,
z_samps,
rgb_samps,
ray_info,
extras,
state_dict,
) = rendered_outputs
n_smps = weights.shape[-1]
out_d_rgb = rgb_final.shape[-1]
out_d_i = invalid.shape[-1]
out_d_dino = state_dict["dino_features"].shape[-1]
if superbatch_size > 0:
rgb_final = rgb_final.reshape(superbatch_size, -1, out_d_rgb)
depth = depth.reshape(superbatch_size, -1)
invalid = invalid.reshape(superbatch_size, -1, n_smps, out_d_i)
ret_dict = DotMap(rgb=rgb_final, depth=depth, invalid=invalid)
if ray_info is not None:
ri_shape = ray_info.shape[-1]
ray_info = ray_info.reshape(superbatch_size, -1, ri_shape)
ret_dict.ray_info = ray_info
if extras is not None:
extras_shape = extras.shape[-1]
extras = extras.reshape(superbatch_size, -1, extras_shape)
ret_dict.extras = extras
if want_weights:
weights = weights.reshape(superbatch_size, -1, n_smps)
ret_dict.weights = weights
if want_alphas:
alphas = alphas.reshape(superbatch_size, -1, n_smps)
ret_dict.alphas = alphas
if want_z_samps:
z_samps = z_samps.reshape(superbatch_size, -1, n_smps)
ret_dict.z_samps = z_samps
if want_rgb_samps:
rgb_samps = rgb_samps.reshape(superbatch_size, -1, n_smps, out_d_rgb)
ret_dict.rgb_samps = rgb_samps
if "dino_features" in state_dict:
dino_features = state_dict["dino_features"].reshape(superbatch_size, -1, out_d_dino)
ret_dict.dino_features = dino_features
if "invalid_features" in state_dict:
invalid_features = state_dict["invalid_features"].reshape(superbatch_size, -1, n_smps, out_d_i)
ret_dict.invalid_features = invalid_features
return ret_dict
def sched_step(self, steps=1):
"""
Called each training iteration to update sample numbers
according to schedule
"""
if self.sched is None:
return
self.iter_idx += steps
while (
self.last_sched.item() < len(self.sched[0])
and self.iter_idx.item() >= self.sched[0][self.last_sched.item()]
):
self.n_coarse = self.sched[1][self.last_sched.item()]
self.n_fine = self.sched[2][self.last_sched.item()]
print(
"INFO: NeRF sampling resolution changed on schedule ==> c",
self.n_coarse,
"f",
self.n_fine,
)
self.last_sched += 1
@classmethod
def from_conf(cls, conf, white_bkgd=False, eval_batch_size=100000):
return cls(
conf.get("n_coarse", 128),
conf.get("n_fine", 0),
n_fine_depth=conf.get("n_fine_depth", 0),
noise_std=conf.get("noise_std", 0.0),
depth_std=conf.get("depth_std", 0.01),
white_bkgd=conf.get("white_bkgd", white_bkgd),
lindisp=conf.get("lindisp", True),
eval_batch_size=conf.get("eval_batch_size", eval_batch_size),
sched=conf.get("sched", None),
hard_alpha_cap=conf.get("hard_alpha_cap", False),
render_mode=conf.get("render_mode", "volumetric"),
surface_sigmoid_scale=conf.get("surface_sigmoid_scale", 1),
render_flow=conf.get("render_flow", False),
normalize_dino=conf.get("normalize_dino", False),
)
def bind_parallel(self, net, gpus=None, simple_output=False):
"""
Returns a wrapper module compatible with DataParallel.
Specifically, it renders rays with this renderer
but always using the given network instance.
Specify a list of GPU ids in 'gpus' to apply DataParallel automatically.
:param net A PixelNeRF network
:param gpus list of GPU ids to parallize to. If length is 1,
does not parallelize
:param simple_output only returns rendered (rgb, depth) instead of the
full render output map. Saves data tranfer cost.
:return torch module
"""
wrapped = _RenderWrapper(net, self, simple_output=simple_output)
if gpus is not None and len(gpus) > 1:
print("Using multi-GPU", gpus)
wrapped = torch.nn.DataParallel(wrapped, gpus, dim=1)
return wrapped
|