File size: 25,921 Bytes
9e15541
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
"""
NeRF differentiable renderer.
References:
https://github.com/bmild/nerf
https://github.com/kwea123/nerf_pl
"""
import torch
import torch.autograd.profiler as profiler
from dotmap import DotMap


class _RenderWrapper(torch.nn.Module):
    def __init__(self, net, renderer, simple_output):
        super().__init__()
        self.net = net
        self.renderer = renderer
        self.simple_output = simple_output

    def forward(
        self,
        rays,
        want_weights=False,
        want_alphas=False,
        want_z_samps=False,
        want_rgb_samps=False,
        sample_from_dist=None,
    ):
        if rays.shape[0] == 0:
            return (
                torch.zeros(0, 3, device=rays.device),
                torch.zeros(0, device=rays.device),
            )

        outputs = self.renderer(
            self.net,
            rays,
            want_weights=want_weights and not self.simple_output,
            want_alphas=want_alphas and not self.simple_output,
            want_z_samps=want_z_samps and not self.simple_output,
            want_rgb_samps=want_rgb_samps and not self.simple_output,
            sample_from_dist=sample_from_dist,
        )
        if self.simple_output:
            if self.renderer.using_fine:
                rgb = outputs.fine.rgb
                depth = outputs.fine.depth
            else:
                rgb = outputs.coarse.rgb
                depth = outputs.coarse.depth
            return rgb, depth
        else:
            # Make DotMap to dict to support DataParallel
            return outputs.toDict()


class NeRFRenderer(torch.nn.Module):
    """
    NeRF differentiable renderer
    :param n_coarse number of coarse (binned uniform) samples
    :param n_fine number of fine (importance) samples
    :param n_fine_depth number of expected depth samples
    :param noise_std noise to add to sigma. We do not use it
    :param depth_std noise for depth samples
    :param eval_batch_size ray batch size for evaluation
    :param white_bkgd if true, background color is white; else black
    :param lindisp if to use samples linear in disparity instead of distance
    :param sched ray sampling schedule. list containing 3 lists of equal length.
    sched[0] is list of iteration numbers,
    sched[1] is list of coarse sample numbers,
    sched[2] is list of fine sample numbers
    """

    def __init__(
        self,
        n_coarse=128,
        n_fine=0,
        n_fine_depth=0,
        noise_std=0.0,
        depth_std=0.01,
        eval_batch_size=100000,
        white_bkgd=False,
        lindisp=False,
        sched=None,  # ray sampling schedule for coarse and fine rays
        hard_alpha_cap=False,
        render_mode="volumetric",
        surface_sigmoid_scale=.1,
        render_flow=False,
        normalize_dino=False,
    ):
        super().__init__()
        self.n_coarse, self.n_fine = n_coarse, n_fine
        self.n_fine_depth = n_fine_depth

        self.noise_std = noise_std
        self.depth_std = depth_std

        self.eval_batch_size = eval_batch_size
        self.white_bkgd = white_bkgd
        self.lindisp = lindisp
        if lindisp:
            print("Using linear displacement rays")
        self.using_fine = n_fine > 0
        self.sched = sched
        if sched is not None and len(sched) == 0:
            self.sched = None
        self.register_buffer(
            "iter_idx", torch.tensor(0, dtype=torch.long), persistent=True
        )
        self.register_buffer(
            "last_sched", torch.tensor(0, dtype=torch.long), persistent=True
        )
        self.hard_alpha_cap = hard_alpha_cap

        assert render_mode in ("volumetric", "surface", "neus")
        self.render_mode = render_mode
        self.only_surface_color = (self.render_mode == "surface")
        self.surface_sigmoid_scale = surface_sigmoid_scale
        self.render_flow = render_flow
        self.normalize_dino = normalize_dino

    def sample_coarse(self, rays):
        """
        Stratified sampling. Note this is different from original NeRF slightly.
        :param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
        :return (B, Kc)
        """
        device = rays.device
        near, far = rays[:, 6:7], rays[:, 7:8]  # (B, 1)

        step = 1.0 / self.n_coarse
        B = rays.shape[0]
        z_steps = torch.linspace(0, 1 - step, self.n_coarse, device=device)  # (Kc)
        z_steps = z_steps.unsqueeze(0).repeat(B, 1)  # (B, Kc)
        z_steps += torch.rand_like(z_steps) * step
        if not self.lindisp:  # Use linear sampling in depth space
            return near * (1 - z_steps) + far * z_steps  # (B, Kf)
        else:  # Use linear sampling in disparity space
            return 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps)  # (B, Kf)

        # Use linear sampling in depth space
        return near * (1 - z_steps) + far * z_steps  # (B, Kc)

    def sample_coarse_from_dist(self, rays, weights, z_samp):
        device = rays.device
        B = rays.shape[0]

        num_bins = weights.shape[-1]
        num_samples = self.n_coarse

        weights = weights.detach() + 1e-5  # Prevent division by zero
        pdf = weights / torch.sum(weights, -1, keepdim=True)  # (B, Kc)
        cdf = torch.cumsum(pdf, -1)  # (B, Kc)
        cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf], -1)  # (B, Kc+1)

        u = torch.rand(B, num_samples, dtype=torch.float32, device=device)  # (B, Kf)
        interval_ids = torch.searchsorted(cdf, u, right=True) - 1  # (B, Kf)
        interval_ids = torch.clamp(interval_ids, 0, num_samples - 1)
        interval_interp = torch.rand_like(interval_ids, dtype=torch.float32)

        # z_samps describe the centers of the respective histogram bins. Therefore, we have to extend them to the left and right
        if self.lindisp:
            z_samp = 1 / z_samp

        centers = 0.5 * (z_samp[:, 1:] + z_samp[:, :-1])
        interval_borders = torch.cat((z_samp[:, :1], centers, z_samp[:, -1:]), dim=-1)

        left_border = torch.gather(interval_borders, dim=-1, index=interval_ids)
        right_border = torch.gather(interval_borders, dim=-1, index=interval_ids + 1)

        z_samp_new = (
            left_border * (1 - interval_interp) + right_border * interval_interp
        )

        if self.lindisp:
            z_samp_new = 1 / z_samp_new

        assert not torch.any(torch.isnan(z_samp_new))

        return z_samp_new

    def sample_fine(self, rays, weights):
        """min
        Weighted stratified (importance) sample
        :param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
        :param weights (B, Kc)
        :return (B, Kf-Kfd)
        """
        device = rays.device
        B = rays.shape[0]

        weights = weights.detach() + 1e-5  # Prevent division by zero
        pdf = weights / torch.sum(weights, -1, keepdim=True)  # (B, Kc)
        cdf = torch.cumsum(pdf, -1)  # (B, Kc)
        cdf = torch.cat([torch.zeros_like(cdf[:, :1]), cdf], -1)  # (B, Kc+1)

        u = torch.rand(
            B, self.n_fine - self.n_fine_depth, dtype=torch.float32, device=device
        )  # (B, Kf)
        inds = torch.searchsorted(cdf, u, right=True).float() - 1.0  # (B, Kf)
        inds = torch.clamp_min(inds, 0.0)

        z_steps = (inds + torch.rand_like(inds)) / self.n_coarse  # (B, Kf)

        near, far = rays[:, 6:7], rays[:, 7:8]  # (B, 1)
        if not self.lindisp:  # Use linear sampling in depth space
            z_samp = near * (1 - z_steps) + far * z_steps  # (B, Kf)
        else:  # Use linear sampling in disparity space
            z_samp = 1 / (1 / near * (1 - z_steps) + 1 / far * z_steps)  # (B, Kf)

        assert not torch.any(torch.isnan(z_samp))

        return z_samp

    def sample_fine_depth(self, rays, depth):
        """
        Sample around specified depth
        :param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
        :param depth (B)
        :return (B, Kfd)
        """
        z_samp = depth.unsqueeze(1).repeat((1, self.n_fine_depth))
        z_samp += torch.randn_like(z_samp) * self.depth_std
        # Clamp does not support tensor bounds
        z_samp = torch.max(torch.min(z_samp, rays[:, 7:8]), rays[:, 6:7])

        assert not torch.any(torch.isnan(z_samp))

        return z_samp

    def composite(self, model, rays, z_samp, coarse=True, sb=0):
        """
        Render RGB and depth for each ray using NeRF alpha-compositing formula,
        given sampled positions along each ray (see sample_*)
        :param model should return (B, (r, g, b, sigma)) when called with (B, (x, y, z))
        should also support 'coarse' boolean argument
        :param rays ray [origins (3), directions (3), near (1), far (1)] (B, 8)
        :param z_samp z positions sampled for each ray (B, K)
        :param coarse whether to evaluate using coarse NeRF
        :param sb super-batch dimension; 0 = disable
        :return weights (B, K), rgb (B, 3), depth (B)
        """
        with profiler.record_function("renderer_composite"):
            B, K = z_samp.shape
            r_dim = rays.shape[-1]

            deltas = z_samp[:, 1:] - z_samp[:, :-1]  # (B, K-1)
            delta_inf = 1e10 * torch.ones_like(deltas[:, :1])  # infty (B, 1)
            # delta_inf = rays[:, -1:] - z_samp[:, -1:]
            deltas = torch.cat([deltas, delta_inf], -1)  # (B, K)

            # (B, K, 3)
            points = rays[:, None, :3] + z_samp.unsqueeze(2) * rays[:, None, 3:6]
            points = points.reshape(-1, 3)  # (B*K, 3)

            if r_dim > 8:
                ray_info = rays[:, None, 8:].expand(-1, K, -1)
            else:
                ray_info = None

            if hasattr(model, "use_viewdirs"):
                use_viewdirs = model.use_viewdirs
            else:
                use_viewdirs = None

            viewdirs_all = []
            rgbs_all, invalid_all, sigmas_all, extras_all, state_dicts_all = [], [], [], [], []

            if sb > 0:
                points = points.reshape(
                    sb, -1, 3
                )  # (SB, B'*K, 3) B' is real ray batch size
                
                if ray_info is not None:
                    ray_info = ray_info.reshape(sb, -1, ray_info.shape[-1])

                eval_batch_dim = 1
                eval_batch_size = (self.eval_batch_size - 1) // sb + 1
            else:
                eval_batch_size = self.eval_batch_size
                eval_batch_dim = 0

            split_points = torch.split(points, eval_batch_size, dim=eval_batch_dim)
            
            if ray_info is not None:
                split_ray_infos = torch.split(ray_info, eval_batch_size, dim=eval_batch_dim)
            else:
                split_ray_infos = [None for _ in split_points]

            if use_viewdirs:
                dim1 = K
                viewdirs = rays[:, None, 3:6].expand(-1, dim1, -1)
                if sb > 0:
                    viewdirs = viewdirs.reshape(sb, -1, 3)  # (SB, B'*K, 3)
                else:
                    viewdirs = viewdirs.reshape(-1, 3)  # (B*K, 3)
                split_viewdirs = torch.split(
                    viewdirs, eval_batch_size, dim=eval_batch_dim
                )

                for i, pnts in enumerate(split_points):
                    dirs = split_viewdirs[i]
                    infos = split_ray_infos[i]

                    rgbs, invalid, sigmas, extras, state_dict = model(
                        pnts, coarse=coarse, viewdirs=dirs, only_density=self.only_surface_color, ray_info=ray_info, render_flow=self.render_flow
                    )
                    rgbs_all.append(rgbs)
                    invalid_all.append(invalid)
                    sigmas_all.append(sigmas)
                    extras_all.append(extras)

                    viewdirs_all.append(dirs)
                    if state_dict is not None:
                        state_dicts_all.append(state_dict)
            else:
                for i, pnts in enumerate(split_points):
                    infos = split_ray_infos[i]

                    rgbs, invalid, sigmas, extras, state_dict = model(pnts, coarse=coarse, only_density=self.only_surface_color, ray_info=infos, render_flow=self.render_flow)
                    rgbs_all.append(rgbs)
                    invalid_all.append(invalid)
                    sigmas_all.append(sigmas)
                    extras_all.append(extras)

                    if state_dict is not None:
                        state_dicts_all.append(state_dict)

            points, viewdirs = None, None

            # (B*K, 4) OR (SB, B'*K, 4)
            if not self.only_surface_color:
                rgbs = torch.cat(rgbs_all, dim=eval_batch_dim)
            else:
                rgbs = None
            invalid = torch.cat(invalid_all, dim=eval_batch_dim)
            sigmas = torch.cat(sigmas_all, dim=eval_batch_dim)

            if not extras_all[0] is None:
                extras = torch.cat(extras_all, dim=eval_batch_dim)
            else:
                extras = None

            deltas = deltas.float()
            sigmas = sigmas.float()

            if (
                state_dicts_all is not None and len(state_dicts_all) != 0
            ):  ## not empty in a list
                state_dicts = {
                    key: torch.cat(
                        [state_dicts[key] for state_dicts in state_dicts_all],
                        dim=eval_batch_dim,
                    )
                    for key in state_dicts_all[0].keys()
                }
            else:
                state_dicts = None

            if rgbs is not None:
                rgbs = rgbs.reshape(B, K, -1)  # (B, K, 4 or 5)
            invalid = invalid.reshape(B, K, -1)
            sigmas = sigmas.reshape(B, K)

            if extras is not None:
                extras = extras.reshape(B, K, -1)

            if state_dicts is not None:
                state_dicts = {
                    key: value.reshape(B, K, *value.shape[2:])
                    for key, value in state_dicts.items()
                }  # BxKx... (BxKxn_viewsx...)

            if self.training and self.noise_std > 0.0:
                sigmas = sigmas + torch.randn_like(sigmas) * self.noise_std

            alphas = 1 - torch.exp(
                -deltas.abs() * torch.relu(sigmas)
            )  # (B, K) (delta should be positive anyways)

            if self.hard_alpha_cap:
                alphas[:, -1] = 1

            deltas, sigmas = None, None

            alphas_shifted = torch.cat(
                [torch.ones_like(alphas[:, :1]), 1 - alphas + 1e-10], -1
            )  # (B, K+1) = [1, a1, a2, ...]
            T = torch.cumprod(alphas_shifted, -1)  # (B)
            weights = alphas * T[:, :-1]  # (B, K)
            # alphas = None
            alphas_shifted = None

            depth_final = torch.sum(weights * z_samp, -1)  # (B)
            state_dicts["dino_features"] = torch.sum(state_dicts["dino_features"].mul_(weights.unsqueeze(-1)), -2)

            if self.render_mode == "neus":
                # dist_from_surf = z_samp - depth_final[..., None]
                indices = torch.arange(0, weights.shape[-1], device=weights.device, dtype=weights.dtype).unsqueeze(0)
                surface_index = torch.sum(weights * indices, dim=-1, keepdim=True)
                dist_from_surf = surface_index - indices
                weights = torch.exp(-.5 * (dist_from_surf * self.surface_sigmoid_scale) ** 2)
                weights = weights / torch.sum(weights, dim=-1, keepdim=True) 

            if not self.only_surface_color:
                rgb_final = torch.sum(weights.unsqueeze(-1) * rgbs, -2)  # (B, 3)
            else:
                surface_points = rays[:, None, :3] + depth_final[:, None, None] * rays[:, None, 3:6]
                surface_points = surface_points.reshape(sb, -1, 3)

                if ray_info is not None:
                    ray_info = ray_info.reshape(sb, -1, K, ray_info.shape[-1])[:, :, 0, :]

                rgb_final, invalid_colors = model.sample_colors(surface_points, ray_info=ray_info, render_flow=self.render_flow)
                rgb_final = rgb_final.permute(0, 2, 1, 3).reshape(B, -1)
                invalid_colors = invalid_colors.permute(0, 2, 1, 3).reshape(B, 1, -1)
                invalid = ((invalid > .5) | invalid_colors).float()

            if self.white_bkgd:
                # White background
                pix_alpha = weights.sum(dim=1)  # (B), pixel alpha
                rgb_final = rgb_final + 1 - pix_alpha.unsqueeze(-1)  # (B, 3)

            if extras is not None:
                extras_final = torch.sum(weights.unsqueeze(-1) * extras, -2)  # (B, extras)
            else:
                extras_final = None

            for name, x in [("weights", weights), ("rgb_final", rgb_final), ("depth_final", depth_final), ("alphas", alphas), ("invalid", invalid), ("z_samp", z_samp)]:
                if torch.any(torch.isnan(x)):
                    print(f"Detected NaN in {name} ({x.dtype}):")
                    print(x)
                    exit()

            if ray_info is not None:
                ray_info = rays[:, None, 8:]

            # return (weights, rgb_final, depth_final, alphas, invalid, z_samp, rgbs, viewdirs)
            return (
                weights,
                rgb_final,
                depth_final,
                alphas,
                invalid,
                z_samp,
                rgbs,
                ray_info,
                extras_final,
                state_dicts,
            )

    def forward(
        self,
        model,
        rays,
        want_weights=False,
        want_alphas=False,
        want_z_samps=False,
        want_rgb_samps=False,
        sample_from_dist=None,
    ):
        """
        :model nerf model, should return (SB, B, (r, g, b, sigma))
        when called with (SB, B, (x, y, z)), for multi-object:
        SB = 'super-batch' = size of object batch,
        B  = size of per-object ray batch.
        Should also support 'coarse' boolean argument for coarse NeRF.
        :param rays ray spec [origins (3), directions (3), near (1), far (1)] (SB, B, 8)
        :param want_weights if true, returns compositing weights (SB, B, K)
        :return render dict
        """
        with profiler.record_function("renderer_forward"):
            if self.sched is not None and self.last_sched.item() > 0:
                self.n_coarse = self.sched[1][self.last_sched.item() - 1]
                self.n_fine = self.sched[2][self.last_sched.item() - 1]

            assert len(rays.shape) == 3
            superbatch_size = rays.shape[0]
            r_dim = rays.shape[-1]

            rays = rays.reshape(-1, r_dim)  # (SB * B, 8)

            if sample_from_dist is None:
                z_coarse = self.sample_coarse(rays)  # (B, Kc)
            else:
                prop_weights, prop_z_samp = sample_from_dist
                n_samples = prop_weights.shape[-1]
                prop_weights = prop_weights.reshape(-1, n_samples)
                prop_z_samp = prop_z_samp.reshape(-1, n_samples)
                z_coarse = self.sample_coarse_from_dist(rays, prop_weights, prop_z_samp)
                z_coarse, _ = torch.sort(z_coarse, dim=-1)
            coarse_composite = self.composite(
                model,
                rays,
                z_coarse,
                coarse=True,
                sb=superbatch_size,
            )

            outputs = DotMap(
                coarse=self._format_outputs(
                    coarse_composite,
                    superbatch_size,
                    want_weights=want_weights,
                    want_alphas=want_alphas,
                    want_z_samps=want_z_samps,
                    want_rgb_samps=want_rgb_samps,
                ),
            )
            outputs.state_dict = coarse_composite[-1]

            if self.using_fine:
                all_samps = [z_coarse]
                if self.n_fine - self.n_fine_depth > 0:
                    all_samps.append(
                        self.sample_fine(rays, coarse_composite[0].detach())
                    )  # (B, Kf - Kfd)
                if self.n_fine_depth > 0:
                    all_samps.append(
                        self.sample_fine_depth(rays, coarse_composite[2])
                    )  # (B, Kfd)
                z_combine = torch.cat(all_samps, dim=-1)  # (B, Kc + Kf)
                z_combine_sorted, argsort = torch.sort(z_combine, dim=-1)
                fine_composite = self.composite(
                    model,
                    rays,
                    z_combine_sorted,
                    coarse=False,
                    sb=superbatch_size,
                )
                outputs.fine = self._format_outputs(
                    fine_composite,
                    superbatch_size,
                    want_weights=want_weights,
                    want_alphas=want_alphas,
                    want_z_samps=want_z_samps,
                    want_rgb_samps=want_rgb_samps,
                )

            return outputs

    def _format_outputs(
        self,
        rendered_outputs,
        superbatch_size,
        want_weights=False,
        want_alphas=False,
        want_z_samps=False,
        want_rgb_samps=False,
    ):
        (
            weights,
            rgb_final,
            depth,
            alphas,
            invalid,
            z_samps,
            rgb_samps,
            ray_info,
            extras,
            state_dict,
        ) = rendered_outputs
        n_smps = weights.shape[-1]
        out_d_rgb = rgb_final.shape[-1]
        out_d_i = invalid.shape[-1]
        out_d_dino = state_dict["dino_features"].shape[-1]

        if superbatch_size > 0:
            rgb_final = rgb_final.reshape(superbatch_size, -1, out_d_rgb)
            depth = depth.reshape(superbatch_size, -1)
            invalid = invalid.reshape(superbatch_size, -1, n_smps, out_d_i)
        ret_dict = DotMap(rgb=rgb_final, depth=depth, invalid=invalid)
        if ray_info is not None:
            ri_shape = ray_info.shape[-1]
            ray_info = ray_info.reshape(superbatch_size, -1, ri_shape)
            ret_dict.ray_info = ray_info
        if extras is not None:
            extras_shape = extras.shape[-1]
            extras = extras.reshape(superbatch_size, -1, extras_shape)
            ret_dict.extras = extras
        if want_weights:
            weights = weights.reshape(superbatch_size, -1, n_smps)
            ret_dict.weights = weights
        if want_alphas:
            alphas = alphas.reshape(superbatch_size, -1, n_smps)
            ret_dict.alphas = alphas
        if want_z_samps:
            z_samps = z_samps.reshape(superbatch_size, -1, n_smps)
            ret_dict.z_samps = z_samps
        if want_rgb_samps:
            rgb_samps = rgb_samps.reshape(superbatch_size, -1, n_smps, out_d_rgb)
            ret_dict.rgb_samps = rgb_samps
        if "dino_features" in state_dict:
            dino_features = state_dict["dino_features"].reshape(superbatch_size, -1, out_d_dino)
            ret_dict.dino_features = dino_features
        if "invalid_features" in state_dict:
            invalid_features = state_dict["invalid_features"].reshape(superbatch_size, -1, n_smps, out_d_i)
            ret_dict.invalid_features = invalid_features
        return ret_dict

    def sched_step(self, steps=1):
        """
        Called each training iteration to update sample numbers
        according to schedule
        """
        if self.sched is None:
            return
        self.iter_idx += steps
        while (
            self.last_sched.item() < len(self.sched[0])
            and self.iter_idx.item() >= self.sched[0][self.last_sched.item()]
        ):
            self.n_coarse = self.sched[1][self.last_sched.item()]
            self.n_fine = self.sched[2][self.last_sched.item()]
            print(
                "INFO: NeRF sampling resolution changed on schedule ==> c",
                self.n_coarse,
                "f",
                self.n_fine,
            )
            self.last_sched += 1

    @classmethod
    def from_conf(cls, conf, white_bkgd=False, eval_batch_size=100000):
        return cls(
            conf.get("n_coarse", 128),
            conf.get("n_fine", 0),
            n_fine_depth=conf.get("n_fine_depth", 0),
            noise_std=conf.get("noise_std", 0.0),
            depth_std=conf.get("depth_std", 0.01),
            white_bkgd=conf.get("white_bkgd", white_bkgd),
            lindisp=conf.get("lindisp", True),
            eval_batch_size=conf.get("eval_batch_size", eval_batch_size),
            sched=conf.get("sched", None),
            hard_alpha_cap=conf.get("hard_alpha_cap", False),
            render_mode=conf.get("render_mode", "volumetric"),
            surface_sigmoid_scale=conf.get("surface_sigmoid_scale", 1),
            render_flow=conf.get("render_flow", False),
            normalize_dino=conf.get("normalize_dino", False),
        )

    def bind_parallel(self, net, gpus=None, simple_output=False):
        """
        Returns a wrapper module compatible with DataParallel.
        Specifically, it renders rays with this renderer
        but always using the given network instance.
        Specify a list of GPU ids in 'gpus' to apply DataParallel automatically.
        :param net A PixelNeRF network
        :param gpus list of GPU ids to parallize to. If length is 1,
        does not parallelize
        :param simple_output only returns rendered (rgb, depth) instead of the
        full render output map. Saves data tranfer cost.
        :return torch module
        """
        wrapped = _RenderWrapper(net, self, simple_output=simple_output)
        if gpus is not None and len(gpus) > 1:
            print("Using multi-GPU", gpus)
            wrapped = torch.nn.DataParallel(wrapped, gpus, dim=1)
        return wrapped