File size: 11,937 Bytes
d0a815c
 
 
 
 
 
 
 
 
 
 
 
 
 
b873cb9
d54a92e
 
 
 
 
 
b873cb9
a571fee
b873cb9
d54a92e
8930886
 
fa7f5f9
d54a92e
fb671fc
d54a92e
ad85b8c
d54a92e
 
 
8930886
 
b873cb9
519b8e4
5401d1a
b873cb9
8930886
b873cb9
 
 
 
e2b2525
d54a92e
e2b2525
d54a92e
5401d1a
 
 
 
fb671fc
b873cb9
fb671fc
b873cb9
fb671fc
b873cb9
5401d1a
 
 
 
 
d54a92e
 
5401d1a
 
 
 
 
 
 
 
e2b2525
 
 
 
 
 
 
5401d1a
e27083d
 
 
74502a8
 
 
 
 
 
 
 
 
 
 
 
e27083d
 
 
8930886
b873cb9
 
d54a92e
b873cb9
 
ba5f9a4
d54a92e
b873cb9
 
d54a92e
b873cb9
5401d1a
d54a92e
 
 
 
 
b873cb9
 
 
 
e2b2525
 
8930886
 
b873cb9
 
d54a92e
b873cb9
62b1ca5
b873cb9
 
 
 
 
8930886
 
 
797bf18
b873cb9
 
ad48936
b873cb9
 
62b1ca5
b873cb9
 
 
 
 
d54a92e
8930886
 
b62b581
b873cb9
d54a92e
b873cb9
55e5d07
d54a92e
b873cb9
 
d54a92e
 
 
b873cb9
e2b2525
d54a92e
 
 
e2b2525
 
 
b873cb9
 
d54a92e
 
5401d1a
 
d54a92e
 
 
 
 
 
 
 
5401d1a
d54a92e
5401d1a
d54a92e
 
 
 
 
 
 
 
 
 
 
 
5401d1a
d54a92e
 
 
 
 
 
 
 
 
5401d1a
d54a92e
5401d1a
b873cb9
 
d54a92e
62b1ca5
 
fb671fc
 
 
 
 
 
 
62b1ca5
 
 
 
d54a92e
 
 
62b1ca5
 
 
b873cb9
2cb7997
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

<p align="center">
    <br>
    <img src="images/title.png" width="900"/>
    <br>
<a href="https://twitter.com/intent/tweet?text=Wow:&url=https%3A%2F%2Fgithub.com%2Fikergarcia1996%2FEasy-Translate"><img alt="Twitter" src="https://img.shields.io/twitter/url?style=social&url=https%3A%2F%2Fgithub.com%2Fikergarcia1996%2FEasy-Translate"></a>
<a href="https://github.com/ikergarcia1996/Easy-Translate/blob/main/LICENSE.md"><img alt="License" src="https://img.shields.io/github/license/ikergarcia1996/Easy-Translate"></a>
<a href="https://huggingface.co/docs/transformers/index"><img alt="Transformers" src="https://img.shields.io/badge/-%F0%9F%A4%97Transformers%20-grey"></a>
<a href="https://huggingface.co/docs/accelerate/index/"><img alt="Accelerate" src="https://img.shields.io/badge/-%F0%9F%A4%97Accelerate%20-grey"></a>
<a href="https://ikergarcia1996.github.io/Iker-Garcia-Ferrero/"><img alt="Author" src="https://img.shields.io/badge/Author-Iker García Ferrero-ff69b4"></a>

<br>
    <br>
</p>

Easy-Translate is a script for translating large text files with a 💥SINGLE COMMAND💥. Easy-Translate is designed to be as easy as possible for **beginners** and as **seamless** and **customizable** as possible for advanced users. 
We support almost any model, including [M2M100](https://arxiv.org/pdf/2010.11125.pdf),
[NLLB200](https://research.facebook.com/publications/no-language-left-behind/), 
[LLaMA](https://ai.facebook.com/blog/large-language-model-llama-meta-ai/),
[Bloom](https://bigscience.notion.site/BLOOM-BigScience-176B-Model-ad073ca07cdf479398d5f95d88e218c4) and more 🥳. 
We also provide a [script](#evaluate-translations) for Easy-Evaluation of your translations 📋

Easy-Translate is built on top of 🤗HuggingFace's [Transformers](https://huggingface.co/docs/transformers/index) and 🤗HuggingFace's [Accelerate](https://huggingface.co/docs/accelerate/index) library.


We currently support:

- CPU / multi-CPU / GPU / multi-GPU / TPU acceleration
- BF16 / FP16 / FP32 / 8 Bits / 4 Bits precision.
- Automatic batch size finder: Forget CUDA OOM errors. Set an initial batch size, if it doesn't fit, we will automatically adjust it.
- Multiple decoding strategies: Greedy Search, Beam Search, Top-K Sampling, Top-p (nucleus) sampling, etc. See [Decoding Strategies](#decodingsampling-strategies) for more information.
- :new: Load huge models in a single GPU with 8-bits / 4-bits quantization and support for splitting the model between GPU and CPU. See [Loading Huge Models](#loading-huge-models) for more information.
- :new: LoRA models support 
- :new: Support for any Seq2SeqLM or CausalLM model from HuggingFace's Hub.
- :new: Prompt support! See [Prompting](#prompting) for more information.

>Test the 🔌 Online Demo here: <https://huggingface.co/spaces/Iker/Translate-100-languages>



## Supported languages

See the [Supported languages table](supported_languages.md) for a table of the supported languages and their ids.

## Supported Models

💥 EasyTranslate now supports any Seq2SeqLM (m2m100, nllb200, small100, mbart, MarianMT, T5, FlanT5, etc.) and any CausalLM (GPT2, LLaMA, Vicuna, Falcon) model from HuggingFace's Hub!!
We still recommend you to use M2M100 or NLLB200 for the best results, but you can experiment with other LLMs and prompting to generate translations. See [Prompting Section](#prompting) for more information. 
You can also see [the examples folder](examples) for examples of how to use EasyTranslate with different models.

### M2M100
**M2M100** is a multilingual encoder-decoder (seq-to-seq) model trained for Many-to-Many multilingual translation introduced in this [paper](https://arxiv.org/abs/2010.11125) and first released in [this](https://github.com/pytorch/fairseq/tree/master/examples/m2m_100) repository. 
>M2M100 can directly translate between 9,900 directions of 100 languages.

- **Facebook/m2m100_418M**: <https://huggingface.co/facebook/m2m100_418M>

- **Facebook/m2m100_1.2B**: <https://huggingface.co/facebook/m2m100_1.2B>

- **Facebook/m2m100_12B**: <https://huggingface.co/facebook/m2m100-12B-avg-5-ckpt>

### NLLB200

**No Language Left Behind (NLLB)** open-sources models capable of delivering high-quality translations directly between any pair of 200+ languages — including low-resource languages like Asturian, Luganda, Urdu and more. It aims to help people communicate with anyone, anywhere, regardless of their language preferences. It was introduced in this [paper](https://research.facebook.com/publications/no-language-left-behind/) and first released in [this](https://github.com/facebookresearch/fairseq/tree/nllb) repository.
>NLLB can directly translate between +40,000 of +200 languages.

- **facebook/nllb-moe-54b**: <https://huggingface.co/facebook/nllb-moe-54b> (Requires transformers 4.28.0)

- **facebook/nllb-200-3.3B**: <https://huggingface.co/facebook/nllb-200-3.3B>

- **facebook/nllb-200-1.3B**: <https://huggingface.co/facebook/nllb-200-1.3B>

- **facebook/nllb-200-distilled-1.3B**: <https://huggingface.co/facebook/nllb-200-distilled-1.3B>

- **facebook/nllb-200-distilled-600M**: <https://huggingface.co/facebook/nllb-200-distilled-600M>

### Other MT Models supported
We support every MT model in the 🤗 Hugging Face's HUB. If you find one that doesn't work, please open an issue for us to fix it or a PR with the fix. This includes, amoung meny others:
- **Small100**: <https://huggingface.co/alirezamsh/small100>
- **Mbart many-to-many / many-to-one**: <https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt>
- **Opus MT**: <Helsinki-NLP/opus-mt-es-en>



## Citation
If you use this software please cite
````
@inproceedings{garcia-ferrero-etal-2022-model,
    title = "Model and Data Transfer for Cross-Lingual Sequence Labelling in Zero-Resource Settings",
    author = "Garc{\'\i}a-Ferrero, Iker  and
      Agerri, Rodrigo  and
      Rigau, German",
    booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2022",
    month = dec,
    year = "2022",
    address = "Abu Dhabi, United Arab Emirates",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.findings-emnlp.478",
    pages = "6403--6416",
}
````

## Requirements

```
Pytorch >= 1.10.0 
See: https://pytorch.org/get-started/locally/

Accelerate >= 0.12.0
pip install accelerate

HuggingFace Transformers 
If you plan to use NLLB200, please use >= 4.28.0, as an important bug was fixed in this version. 
pip install --upgrade transformers

BitsAndBytes (Optional, for 8-bits / 4bits quantization)
pip install bitsandbytes

PEFT (Optional, for LoRA models)
pip install peft
```

## Translate a file

Run `python translate.py -h` for more info.   
See [the examples folder](examples) for examples of how to run different models.

#### Using a single CPU / GPU

```bash
python3 translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.m2m100_1.2B.txt \
--source_lang en \
--target_lang es \
--model_name facebook/m2m100_1.2B
```

#### Multi-GPU

See Accelerate documentation for more information (multi-node, TPU, Sharded model...): <https://huggingface.co/docs/accelerate/index>  
You can use the Accelerate CLI to configure the Accelerate environment (Run `accelerate config` in your terminal) instead of using the `--multi_gpu and --num_processes` flags.

```bash
# Use 2 GPUs
accelerate launch --multi_gpu --num_processes 2 --num_machines 1 translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.m2m100_1.2B.txt \
--source_lang en \
--target_lang es \
--model_name facebook/m2m100_1.2B
```


#### Automatic batch size finder

We will automatically find a batch size that fits in your GPU memory. The default initial batch size is 128 (You can set it with the `--starting_batch_size 128` flag). If we find an Out Of Memory error, we will automatically decrease the batch size until we find a working one.

### Loading Huge Models

Huge models such as LLaMA 65B or nllb-moe-54b can be loaded in a single GPU with 8 bits and 4 bits quantification with minimal performance degradation. 
See [BitsAndBytes](https://github.com/TimDettmers/bitsandbytes). Set precision to 8 or 4 with the `--precision` flag. 

```bash
pip install bitsandbytes

python3 translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.translation.nllb200-moe-54B.txt \
--source_lang eng_Latn \
--target_lang spa_Latn \
--model_name facebook/nllb-moe-54b \
--precision 8 \
--force_auto_device_map \
--starting_batch_size 8
```

If even the quantified model does not fit in your GPU memory, you can set the `--force_auto_device_map` flag. 
The model will be split across GPUs and CPU to fit it in memory. CPU offloading is slow, but will allow you to run huge models that do not fit in your GPU memory.



### Prompting

You can use LLMs such as LLaMA, Vicuna, GPT2, FlanT5, etc, instead of a translation model. These models require 
a prompt to define the task. You can either have the prompt already in the input file (each sentence includes the prompt) 
or you can use the `--prompt` flag to add the prompt to each sentence. In this case, you need to include the token %%SENTENCE%% in the prompt. 
This token will be replaced by the sentence to translate. You do not need to specify the `--source_lang` and `--target_lang` flags in this case.

```bash
python3 translate.py \
--sentences_path sample_text/en.txt \
--output_path sample_text/en2es.FlanT5.translation.txt \
--model_name google/flan-t5-large \
--prompt "Translate English to Spanish: %%SENTENCE%%" 
``` 


### Decoding/Sampling strategies

You can choose the decoding/sampling strategy to use and the number of candidate translations to output for each input sentence. 
By default, we will use beam-search with `num_beams` set to 5, and we will output the most likely candidate translation. This should be the best 
configuration for most use cases. You can change this behaviour with the following flags:

```bash
--num_beams: Number of beams to use for beam-search decoding (default: 5)
--do_sample: Whether to use sampling instead of beam-search decoding (default: False)
--temperature: Sampling temperature (default: 0.8)
--top_k: Top k sampling (default: 100)
--top_p: Top p sampling (default: 0.75)
--repetition_penalty: Repetition penalty (default: 1.0)
--keep_special_tokens: Whether to keep special tokens (default: False)
--keep_tokenization_spaces: Whether to keep tokenization spaces (default: False)
--num_return_sequences: Number of candidate translations to output for each input sentence (default: 1)
```
Please, note that running `--do_sample` with `--num_beams` > 1 and `8 bits` or `4 bits` quantification may be numerically unstable and produce an error. 

## Evaluate translations

To run the evaluation script you need to install [bert_score](https://github.com/Tiiiger/bert_score): `pip install bert_score` and 🤗HuggingFace's [Evaluate](https://huggingface.co/docs/evaluate) model: `pip install evaluate`.

The evaluation script will calculate the following metrics:

- [SacreBLEU](https://github.com/huggingface/datasets/tree/master/metrics/sacrebleu)
- [BLEU](https://github.com/huggingface/datasets/tree/master/metrics/bleu)
- [ROUGE](https://github.com/huggingface/datasets/tree/master/metrics/rouge)
- [METEOR](https://github.com/huggingface/datasets/tree/master/metrics/meteor)
- [TER](https://github.com/huggingface/datasets/tree/master/metrics/ter)
- [BertScore](https://github.com/huggingface/datasets/tree/master/metrics/bertscore)

Run the following command to evaluate the translations:

```bash
python3 eval.py \
--pred_path sample_text/en2es.translation.m2m100_1.2B.txt \
--gold_path sample_text/es.txt 
```

If you want to save the results to a file use the `--output_path` flag.

See [sample_text/en2es.m2m100_1.2B.json](sample_text/en2es.m2m100_1.2B.json) for a sample output.