File size: 12,011 Bytes
5bd7f14
 
 
 
 
 
 
 
 
b873cb9
5401d1a
 
b873cb9
 
 
5bd7f14
 
b873cb9
5bd7f14
d3132fd
b873cb9
 
f016c88
 
 
 
b873cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee0f30d
b873cb9
1e19e28
 
 
b873cb9
 
 
 
 
1e19e28
b873cb9
 
1e19e28
b873cb9
95d0c3a
5401d1a
 
 
 
086ac2b
2a897d7
390a692
1e19e28
998d5ca
1e19e28
6cc3f7d
01e13d9
1cb8a41
 
6cc3f7d
b873cb9
122365e
5401d1a
b873cb9
 
122365e
5401d1a
b873cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e19e28
998d5ca
 
 
 
 
 
1e19e28
998d5ca
5401d1a
 
 
 
 
 
1e19e28
b873cb9
 
 
95d0c3a
5401d1a
 
 
 
b873cb9
1e19e28
390a692
 
 
011cb1f
02502dd
 
 
57ffa19
02502dd
 
 
 
 
774b679
02502dd
 
 
 
 
2a897d7
 
02502dd
5401d1a
 
 
1e19e28
b873cb9
 
ea68187
1e19e28
b873cb9
1e19e28
b873cb9
 
 
 
 
 
 
749ff6d
b873cb9
749ff6d
4db19c9
 
b873cb9
011cb1f
4db19c9
 
 
 
b873cb9
 
4db19c9
b873cb9
 
749ff6d
b873cb9
 
 
1e19e28
b873cb9
 
 
749ff6d
b873cb9
 
 
1e19e28
b873cb9
2a897d7
 
 
b873cb9
4db19c9
5bd7f14
 
 
 
 
 
 
 
4db19c9
011cb1f
4db19c9
 
 
 
0f4f627
3d26fd2
f016c88
3d26fd2
0f4f627
 
1e19e28
a4abd95
b873cb9
 
1e19e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b873cb9
1e19e28
 
 
 
 
 
b873cb9
1e19e28
 
 
b873cb9
1e19e28
b873cb9
a4d80df
 
1e19e28
 
 
 
 
 
 
 
 
 
b873cb9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e19e28
b873cb9
 
1e19e28
 
95d0c3a
 
 
 
 
 
 
1e19e28
b873cb9
 
 
 
 
1e19e28
 
5401d1a
 
 
 
 
 
 
 
 
01e13d9
5401d1a
 
 
 
 
 
01e13d9
5401d1a
 
 
 
 
 
01e13d9
5401d1a
 
 
086ac2b
 
 
 
 
 
2a897d7
 
 
 
 
 
390a692
 
 
 
 
 
 
1e19e28
 
 
 
 
 
 
b873cb9
1e19e28
b873cb9
9f0798a
b873cb9
95d0c3a
1e19e28
5401d1a
 
 
 
2a897d7
 
390a692
1e19e28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
import os
import math
import argparse

import torch
from torch.utils.data import DataLoader

from tqdm import tqdm

from transformers import (
    AutoModelForSeq2SeqLM,
    AutoTokenizer,
    PreTrainedTokenizerBase,
    DataCollatorForSeq2Seq,
)


from dataset import DatasetReader, count_lines

from accelerate import Accelerator, DistributedType, find_executable_batch_size


def encode_string(text):
    return text.replace("\r", r"\r").replace("\n", r"\n").replace("\t", r"\t")


def get_dataloader(
    accelerator: Accelerator,
    filename: str,
    tokenizer: PreTrainedTokenizerBase,
    batch_size: int,
    max_length: int,
) -> DataLoader:
    dataset = DatasetReader(filename, tokenizer, max_length)
    if accelerator.distributed_type == DistributedType.TPU:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            padding="max_length",
            max_length=max_length,
            label_pad_token_id=tokenizer.pad_token_id,
            return_tensors="pt",
        )
    else:
        data_collator = DataCollatorForSeq2Seq(
            tokenizer,
            padding=True,
            label_pad_token_id=tokenizer.pad_token_id,
            # max_length=max_length, No need to set max_length here, we already truncate in the preprocess function
            pad_to_multiple_of=8,
            return_tensors="pt",
        )

    return DataLoader(
        dataset,
        batch_size=batch_size,
        collate_fn=data_collator,
        num_workers=0,  # Disable multiprocessing
    )


def main(
    sentences_path: str,
    output_path: str,
    source_lang: str,
    target_lang: str,
    starting_batch_size: int,
    model_name: str = "facebook/m2m100_1.2B",
    cache_dir: str = None,
    precision: str = "32",
    max_length: int = 128,
    num_beams: int = 4,
    num_return_sequences: int = 1,
    do_sample: bool = False,
    temperature: float = 1.0,
    top_k: int = 50,
    top_p: float = 1.0,
    keep_special_tokens: bool = False,
    keep_tokenization_spaces: bool = False,
    repetition_penalty: float = None,
):
    os.makedirs(os.path.abspath(os.path.dirname(output_path)), exist_ok=True)

    accelerator = Accelerator(
        mixed_precision=precision if precision != "32" else "no",
        split_batches=False,
        dispatch_batches=False,
    )

    print(f"Loading tokenizer {model_name}...")
    tokenizer = AutoTokenizer.from_pretrained(
        pretrained_model_name_or_path=model_name, cache_dir=cache_dir
    )
    print(f"Loading model {model_name}...")
    model = AutoModelForSeq2SeqLM.from_pretrained(
        pretrained_model_name_or_path=model_name, cache_dir=cache_dir
    )

    model.eval()

    print(f"Preparing data...\n")

    if precision == "32":
        model = model.float()
    elif precision == "fp16":
        model = model.half()
    elif precision == "bf16":
        model = model.bfloat16()
    else:
        raise ValueError("Precision not supported. Supported values: 32, fp16, bf16")

    try:
        _ = tokenizer.lang_code_to_id[source_lang]
    except KeyError:
        raise KeyError(
            f"Language {source_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
        )
    tokenizer.src_lang = source_lang

    try:
        lang_code_to_idx = tokenizer.lang_code_to_id[target_lang]
    except KeyError:
        raise KeyError(
            f"Language {target_lang} not found in tokenizer. Available languages: {tokenizer.lang_code_to_id.keys()}"
        )

    gen_kwargs = {
        "max_length": max_length,
        "num_beams": num_beams,
        "num_return_sequences": num_return_sequences,
        "do_sample": do_sample,
        "temperature": temperature,
        "top_k": top_k,
        "top_p": top_p,
    }

    if repetition_penalty is not None:
        gen_kwargs["repetition_penalty"] = repetition_penalty

    total_lines: int = count_lines(sentences_path)

    if accelerator.is_main_process:
        print(
            f"** Translation **\n"
            f"Input file: {sentences_path}\n"
            f"Output file: {output_path}\n"
            f"Source language: {source_lang}\n"
            f"Target language: {target_lang}\n"
            f"Starting batch size: {starting_batch_size}\n"
            f"Device: {str(accelerator.device).split(':')[0]}\n"
            f"Num. Devices: {accelerator.num_processes}\n"
            f"Distributed_type: {accelerator.distributed_type}\n"
            f"Max length: {max_length}\n"
            f"Precision: {model.dtype}\n"
            f"Model: {model_name}\n"
            f"Keep special tokens: {keep_special_tokens}\n"
            f"Keep tokenization spaces: {keep_tokenization_spaces}\n"
        )
        print("** Generation parameters **")
        print("\n".join(f"{k}: {v}" for k, v in gen_kwargs.items()))
        print("\n")

    @find_executable_batch_size(starting_batch_size=starting_batch_size)
    def inference(batch_size):
        nonlocal model, tokenizer, sentences_path, max_length, output_path, lang_code_to_idx, gen_kwargs, precision

        print(f"Translating with batch size {batch_size}")

        data_loader = get_dataloader(
            accelerator=accelerator,
            filename=sentences_path,
            tokenizer=tokenizer,
            batch_size=batch_size,
            max_length=max_length,
        )

        model, data_loader = accelerator.prepare(model, data_loader)

        samples_seen: int = 0

        with tqdm(
            total=total_lines,
            desc="Dataset translation",
            leave=True,
            ascii=True,
            disable=(not accelerator.is_main_process),
        ) as pbar, open(output_path, "w", encoding="utf-8") as output_file:
            with torch.no_grad():
                for step, batch in enumerate(data_loader):
                    batch["input_ids"] = batch["input_ids"]
                    batch["attention_mask"] = batch["attention_mask"]

                    generated_tokens = accelerator.unwrap_model(model).generate(
                        **batch, forced_bos_token_id=lang_code_to_idx, **gen_kwargs
                    )

                    generated_tokens = accelerator.pad_across_processes(
                        generated_tokens, dim=1, pad_index=tokenizer.pad_token_id
                    )

                    generated_tokens = (
                        accelerator.gather(generated_tokens).cpu().numpy()
                    )

                    tgt_text = tokenizer.batch_decode(
                        generated_tokens,
                        skip_special_tokens=not keep_special_tokens,
                        clean_up_tokenization_spaces=not keep_tokenization_spaces,
                    )
                    if accelerator.is_main_process:
                        if (
                            step
                            == math.ceil(
                                math.ceil(total_lines / batch_size)
                                / accelerator.num_processes
                            )
                            - 1
                        ):
                            tgt_text = tgt_text[
                                : (total_lines * num_return_sequences) - samples_seen
                            ]
                        else:
                            samples_seen += len(tgt_text)

                        print(
                            "\n".join(
                                [encode_string(sentence) for sentence in tgt_text]
                            ),
                            file=output_file,
                        )

                    pbar.update(len(tgt_text) // gen_kwargs["num_return_sequences"])

    inference()
    print(f"Translation done.\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Run the translation experiments")
    parser.add_argument(
        "--sentences_path",
        type=str,
        required=True,
        help="Path to a txt file containing the sentences to translate. One sentence per line.",
    )

    parser.add_argument(
        "--output_path",
        type=str,
        required=True,
        help="Path to a txt file where the translated sentences will be written.",
    )

    parser.add_argument(
        "--source_lang",
        type=str,
        required=True,
        help="Source language id. See: supported_languages.md",
    )

    parser.add_argument(
        "--target_lang",
        type=str,
        required=True,
        help="Target language id. See: supported_languages.md",
    )

    parser.add_argument(
        "--starting_batch_size",
        type=int,
        default=128,
        help="Starting batch size, we will automatically reduce it if we find an OOM error."
        "If you use multiple devices, we will divide this number by the number of devices.",
    )

    parser.add_argument(
        "--model_name",
        type=str,
        default="facebook/m2m100_1.2B",
        help="Path to the model to use. See: https://huggingface.co/models",
    )

    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="Cache directory from which to load the model, or None to not cache",
    )

    parser.add_argument(
        "--max_length",
        type=int,
        default=128,
        help="Maximum number of tokens in the source sentence and generated sentence. "
        "Increase this value to translate longer sentences, at the cost of increasing memory usage.",
    )

    parser.add_argument(
        "--num_beams",
        type=int,
        default=5,
        help="Number of beams for beam search, m2m10 author recommends 5, but it might use too much memory",
    )

    parser.add_argument(
        "--num_return_sequences",
        type=int,
        default=1,
        help="Number of possible translation to return for each sentence (num_return_sequences<=num_beams).",
    )

    parser.add_argument(
        "--precision",
        type=str,
        default="32",
        choices=["bf16", "fp16", "32"],
        help="Precision of the model. bf16, fp16 or 32.",
    )

    parser.add_argument(
        "--do_sample",
        action="store_true",
        help="Use sampling instead of beam search.",
    )

    parser.add_argument(
        "--temperature",
        type=float,
        default=0.8,
        help="Temperature for sampling, value used only if do_sample is True.",
    )

    parser.add_argument(
        "--top_k",
        type=int,
        default=100,
        help="If do_sample is True, will sample from the top k most likely tokens.",
    )

    parser.add_argument(
        "--top_p",
        type=float,
        default=0.75,
        help="If do_sample is True, will sample from the top k most likely tokens.",
    )

    parser.add_argument(
        "--keep_special_tokens",
        action="store_true",
        help="Keep special tokens in the decoded text.",
    )

    parser.add_argument(
        "--keep_tokenization_spaces",
        action="store_true",
        help="Do not clean spaces in the decoded text.",
    )

    parser.add_argument(
        "--repetition_penalty",
        type=float,
        default=None,
        help="Repetition penalty.",
    )

    args = parser.parse_args()

    main(
        sentences_path=args.sentences_path,
        output_path=args.output_path,
        source_lang=args.source_lang,
        target_lang=args.target_lang,
        starting_batch_size=args.starting_batch_size,
        model_name=args.model_name,
        cache_dir=args.cache_dir,
        max_length=args.max_length,
        num_beams=args.num_beams,
        num_return_sequences=args.num_return_sequences,
        precision=args.precision,
        do_sample=args.do_sample,
        temperature=args.temperature,
        top_k=args.top_k,
        top_p=args.top_p,
        keep_special_tokens=args.keep_special_tokens,
        keep_tokenization_spaces=args.keep_tokenization_spaces,
        repetition_penalty=args.repetition_penalty,
    )