Spaces:
Runtime error
Runtime error
File size: 6,030 Bytes
1c29b1a ac493ec df044c6 2ae8bfe ac493ec 2ae8bfe ac493ec 2ae8bfe 1c29b1a 2ae8bfe 1c29b1a 2ae8bfe 1c29b1a 2ae8bfe 1c29b1a 2ae8bfe ac493ec 2ae8bfe 782e950 2ae8bfe ac493ec 2ae8bfe ac493ec 2ae8bfe ac493ec f8c09da 782e950 4ac3999 f8c09da 4ac3999 1895d54 4ac3999 f8c09da ac493ec 75f72d8 df044c6 ac493ec 75f72d8 ac493ec 2ae8bfe ac493ec |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from buster.completers import Completion
# from embed_docs import embed_rtd_website
# from rtd_scraper.scrape_rtd import scrape_rtd
from embed_docs import embed_documents
import cfg
from cfg import setup_buster
# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]
# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY") # Mandatory for app to work
readthedocs_url = os.getenv("READTHEDOCS_URL") # Mandatory for app to work as intended
readthedocs_version = os.getenv("READTHEDOCS_VERSION")
if openai_api_key is None:
print(
"Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
)
if readthedocs_url is None:
raise ValueError(
"No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
)
if readthedocs_version is None:
print(
"""
Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
"""
)
# Override to put it anywhere
save_directory = "outputs/"
# scrape and embed content from readthedocs website
# You only need to embed the first time the app runs, comment it out to skip
embed_documents(
homepage_url=readthedocs_url,
save_directory=save_directory,
target_version=readthedocs_version,
)
# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)
# Setup Gradio app
def add_user_question(
user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
"""Adds a user's question to the chat history.
If no history is provided, the first element of the history will be the user conversation.
"""
if chat_history is None:
chat_history = []
chat_history.append([user_question, None])
return chat_history
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
# drop duplicate pages (by title), keep highest ranking ones
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
documents_answer_template: str = "π Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
document_template: str = "[π {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot π€ and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
if completion.answer_relevant:
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
"""Answer a user's question using retrieval augmented generation."""
# We assume that the question is the user's last interaction
user_input = chat_history[-1][0]
# Do retrieval + augmented generation with buster
completion = buster.process_input(user_input)
# Stream tokens one at a time to the user
chat_history[-1][1] = ""
for token in completion.answer_generator:
chat_history[-1][1] += token
yield chat_history, completion
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown("<h1><center>RAGTheDocs</center></h1>")
gr.Markdown(
"""
## About
[RAGTheDocs](https://github.com/jerpint/RAGTheDocs) allows you to ask questions about any documentation hosted on readthedocs.
Simply clone this space and set the environment variables:
* `OPENAI_API_KEY` (required): Needed for the app to work, e.g. `sk-...`
* `READTHEDOCS_URL` (required): The url of the website you are interested in scraping (must be built with
sphinx/readthedocs). e.g. `https://orion.readthedocs.io`
* `READTHEDOCS_VERSION` (optional): This is important if there exist multiple versions of the docs (e.g. `en/v0.2.7` or `en/latest`). If left empty, it will scrape all available versions (there can be many for open-source projects!).
Try it out by asking a question below π about [orion](https://orion.readthedocs.io/), an open-source hyperparameter optimization library.
## How it works
This app uses [Buster π€](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
answer questions.
View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
"""
)
chatbot = gr.Chatbot()
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Type your question here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
examples = gr.Examples(
examples=[
"How can I install the library?",
"What dependencies are required?",
"Give a brief overview of the library.",
],
inputs=question,
)
response = gr.State()
# fmt: off
gr.on(
triggers=[submit.click, question.submit],
fn=add_user_question,
inputs=[question],
outputs=[chatbot]
).then(
chat,
inputs=[chatbot],
outputs=[chatbot, response]
).then(
add_sources,
inputs=[chatbot, response],
outputs=[chatbot]
)
demo.queue(concurrency_count=8)
demo.launch(share=False)
|