Spaces:
Sleeping
Sleeping
File size: 5,446 Bytes
1c29b1a ac493ec 49bd8e8 ac493ec 49bd8e8 ac493ec 2ae8bfe ac493ec 1c29b1a 0f33bb1 1c29b1a 0f33bb1 2ae8bfe 0f33bb1 1c29b1a 0f33bb1 ac493ec 2ae8bfe ac493ec 2ae8bfe ac493ec 2e37370 f8c09da 2e37370 f8c09da 2e37370 f8c09da ac493ec 2e37370 ac493ec 75f72d8 ac493ec c555b55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import os
from typing import Optional, Tuple
import gradio as gr
import pandas as pd
from buster.completers import Completion
from buster.utils import extract_zip
from embed_docs import crawl_and_embed_docs
import cfg
from cfg import setup_buster
# Typehint for chatbot history
ChatHistory = list[list[Optional[str], Optional[str]]]
# Because this is a one-click deploy app, we will be relying on env. variables being set
openai_api_key = os.getenv("OPENAI_API_KEY") # Mandatory for app to work
if os.path.exists("outputs.zip"):
print("Found outputs.zip, Skipping crawl and embed.")
extract_zip("outputs.zip", output_path="outputs")
else:
readthedocs_url = os.getenv("READTHEDOCS_URL") # Mandatory for app to work as intended
readthedocs_version = os.getenv("READTHEDOCS_VERSION")
if openai_api_key is None:
print(
"Warning: No OPENAI_API_KEY detected. Set it with 'export OPENAI_API_KEY=sk-...'."
)
if readthedocs_url is None:
raise ValueError(
"No READTHEDOCS_URL detected. Set it with e.g. 'export READTHEDOCS_URL=https://orion.readthedocs.io/'"
)
if readthedocs_version is None:
print(
"""
Warning: No READTHEDOCS_VERSION detected. If multiple versions of the docs exist, they will all be scraped.
Set it with e.g. 'export READTHEDOCS_VERSION=en/stable'
"""
)
# scrape and embed content from readthedocs website
crawl_and_embed_docs(
homepage_url=readthedocs_url,
save_directory="outputs", # Expected to be in outputs/ by buster cfg
target_version=readthedocs_version,
)
# Setup RAG agent
buster = setup_buster(cfg.buster_cfg)
# Setup Gradio app
def add_user_question(
user_question: str, chat_history: Optional[ChatHistory] = None
) -> ChatHistory:
"""Adds a user's question to the chat history.
If no history is provided, the first element of the history will be the user conversation.
"""
if chat_history is None:
chat_history = []
chat_history.append([user_question, None])
return chat_history
def format_sources(matched_documents: pd.DataFrame) -> str:
if len(matched_documents) == 0:
return ""
matched_documents.similarity_to_answer = (
matched_documents.similarity_to_answer * 100
)
# drop duplicate pages (by title), keep highest ranking ones
matched_documents = matched_documents.sort_values(
"similarity_to_answer", ascending=False
).drop_duplicates("title", keep="first")
documents_answer_template: str = "📝 Here are the sources I used to answer your question:\n\n{documents}\n\n{footnote}"
document_template: str = "[🔗 {document.title}]({document.url}), relevance: {document.similarity_to_answer:2.1f} %"
documents = "\n".join(
[
document_template.format(document=document)
for _, document in matched_documents.iterrows()
]
)
footnote: str = "I'm a bot 🤖 and not always perfect."
return documents_answer_template.format(documents=documents, footnote=footnote)
def add_sources(history, completion):
if completion.answer_relevant:
formatted_sources = format_sources(completion.matched_documents)
history.append([None, formatted_sources])
return history
def chat(chat_history: ChatHistory) -> Tuple[ChatHistory, Completion]:
"""Answer a user's question using retrieval augmented generation."""
# We assume that the question is the user's last interaction
user_input = chat_history[-1][0]
# Do retrieval + augmented generation with buster
completion = buster.process_input(user_input)
# Stream tokens one at a time to the user
chat_history[-1][1] = ""
for token in completion.answer_generator:
chat_history[-1][1] += token
yield chat_history, completion
demo = gr.Blocks()
with demo:
with gr.Row():
gr.Markdown("<h1><center>RAGTheDocs - docs.mila.quebec </center></h1>")
gr.Markdown(
"""
## About
RAGTheDocs allows you to ask questions found on the docs.mila.quebec website.
Try it out by asking a question below about [mila docs](https://docs.mila.quebec/).
## How it works
This app uses [Buster 🤖](https://github.com/jerpint/buster) and ChatGPT to search the docs for relevant info and
answer questions.
View the code on the [project homepage](https://github.com/jerpint/RAGTheDocs)
"""
)
chatbot = gr.Chatbot()
with gr.Row():
question = gr.Textbox(
label="What's your question?",
placeholder="Type your question here...",
lines=1,
)
submit = gr.Button(value="Send", variant="secondary")
examples = gr.Examples(
examples=[
"How can I request a job with multiple GPUs?",
"Where should I store large datasets?",
"how can i view my GPU usage?",
],
inputs=question,
)
response = gr.State()
# fmt: off
gr.on(
triggers=[submit.click, question.submit],
fn=add_user_question,
inputs=[question],
outputs=[chatbot]
).then(
chat,
inputs=[chatbot],
outputs=[chatbot, response]
).then(
add_sources,
inputs=[chatbot, response],
outputs=[chatbot]
)
demo.launch()
|