File size: 6,613 Bytes
8d5a97a
 
 
 
 
 
 
 
 
 
77c903f
8d5a97a
 
 
 
d4dddf1
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e85849
8d5a97a
 
 
 
7e85849
8d5a97a
 
d4dddf1
8d5a97a
 
 
 
5aea366
8d5a97a
 
 
 
 
 
 
 
 
 
7e85849
8d5a97a
 
 
 
 
 
 
7e85849
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e85849
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6821614
77c903f
 
 
8d5a97a
 
 
 
 
 
 
 
77c903f
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c903f
 
8d5a97a
 
 
 
7ee6ea8
8d5a97a
7e85849
8d5a97a
 
 
 
 
 
77c903f
 
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6eea004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d5a97a
 
 
d4dddf1
 
 
8d5a97a
 
 
6eea004
8d5a97a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d4dddf1
 
 
8d5a97a
 
 
 
 
 
6eea004
8d5a97a
d4dddf1
 
 
 
 
 
 
 
 
 
 
 
 
8d5a97a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import math
import operator as op
import itertools as it
import functools as ft
import collections as cl
from pathlib import Path

import pandas as pd
import gradio as gr
import seaborn as sns
import matplotlib.pyplot as plt
from datasets import load_dataset
from scipy.special import expit

HDI = cl.namedtuple('HDI', 'lower, upper')
TabGroup = cl.namedtuple('TabGroup', 'name, docs, dataset')

#
# See https://cran.r-project.org/package=HDInterval
#
def hdi(values, ci=0.95):
    values = sorted(filter(math.isfinite, values))
    if not values:
        raise ValueError('Empty data set')

    n = len(values)
    exclude = n - math.floor(n * ci)

    left = it.islice(values, exclude)
    right = it.islice(values, n - exclude, None)

    diffs = ((x, y, y - x) for (x, y) in zip(left, right))
    (*args, _) = min(diffs, key=op.itemgetter(-1))

    return HDI(*args)

#
#
#
def load(repo):
    parameter = 'parameter'
    model = 'model'
    items = [
        'chain',
        'sample',
        parameter,
        model,
        'value',
    ]
    dataset = load_dataset(str(repo))

    return (dataset
            .get('train')
            .to_pandas()
            .rename(columns={'element': model})
            .filter(items=items)
            .query(f'{parameter} == "alpha"')
            .drop(columns=parameter))

def summarize(df, ci=0.95):
    def _aggregate(i, g):
        values = g['value']
        interval = hdi(values, ci)

        agg = {
            'model': i,
            'ability': values.median(),
            'uncertainty': interval.upper - interval.lower,
        }
        agg.update(interval._asdict())

        return agg

    groups = df.groupby('model', sort=False)
    records = it.starmap(_aggregate, groups)

    return pd.DataFrame.from_records(records)

def rank(df, ascending, name='rank'):
    df = (df
          .sort_values(by=['ability',  'uncertainty'],
                       ascending=[ascending, not ascending])
          .drop(columns='uncertainty')
          .reset_index(drop=True))
    df.index += 1

    return df.reset_index(names=name)

def compare(df, model_1, model_2):
    mcol = 'model'
    models = [
        model_1,
        model_2,
    ]
    view = (df
            .query(f'{mcol} in @models')
            .pivot(index=['chain', 'sample'],
                   columns=mcol,
                   values='value'))

    return expit(view[model_1] - view[model_2])

#
#
#
class DataPlotter:
    def __init__(self, df):
        self.df = df

    def plot(self):
        fig = plt.figure(dpi=200)

        ax = fig.gca()
        self.draw(ax)
        ax.grid(visible=True,
                axis='both',
                alpha=0.25,
                linestyle='dotted')
        fig.tight_layout()

        return fig

    def draw(self, ax):
        raise NotImplementedError()

class RankPlotter(DataPlotter):
    _y = 'y'

    @ft.cached_property
    def y(self):
        return self.df[self._y]

    def __init__(self, df, top=10):
        view = rank(summarize(df), True, self._y)
        view = (view
                .tail(top)
                .sort_values(by=self._y, ascending=False))
        super().__init__(view)

    def draw(self, ax):
        self.df.plot.scatter('ability', self._y, ax=ax)
        ax.hlines(self.y,
                  xmin=self.df['lower'],
                  xmax=self.df['upper'],
                  alpha=0.5)
        ax.set_xlabel(ax.get_xlabel().title())
        ax.set_ylabel('')
        ax.set_yticks(self.y, self.df['model'])

class ComparisonPlotter(DataPlotter):
    def __init__(self, df, model_1, model_2, ci=0.95):
        super().__init__(compare(df, model_1, model_2))
        self.interval = hdi(self.df, ci)

    def draw(self, ax):
        sns.ecdfplot(self.df, ax=ax)

        (_, color, *_) = sns.color_palette()
        ax.axvline(x=self.df.median(),
                   color=color,
                   linestyle='dashed')
        ax.axvspan(xmin=self.interval.lower,
                   xmax=self.interval.upper,
                   alpha=0.15,
                   color=color)
        ax.set_xlabel('Pr(M$_{1}$ \u003E M$_{2}$)')

def cplot(df, ci=0.95):
    def _plot(model_1, model_2):
        cp = ComparisonPlotter(df, model_1, model_2, ci)
        return cp.plot()

    return _plot

#
#
#
class DocumentationReader:
    _suffix = '.md'

    def __init__(self, root):
        self.root = root

    def __getitem__(self, item):
        return (self
                .root
                .joinpath(item)
                .with_suffix(self._suffix)
                .read_text())

#
#
#
def layout(tab):
    df = load(Path('jerome-white', tab.dataset))
    docs = DocumentationReader(Path('docs', t.docs))

    with gr.Row():
        with gr.Column():
            gr.Markdown(docs['readme'])

        with gr.Column():
            plotter = RankPlotter(df)
            gr.Plot(plotter.plot())

    with gr.Row():
        view = rank(summarize(df), False)
        columns = { x: f'HDI {x}' for x in HDI._fields }
        for i in view.columns:
            columns.setdefault(i, i.title())
        view = (view
                .rename(columns=columns)
                .style.format(precision=4))

        gr.Dataframe(view)

    with gr.Row():
        with gr.Column(scale=3):
            display = gr.Plot()

        with gr.Row():
            with gr.Column():
                gr.Markdown('''

                Probability that Model 1 is preferred to Model 2. The
                solid blue curve is a CDF of that distribution;
                formally the inverse logit of the difference in model
                abilities. The dashed orange vertical line is the
                median, while the band surrounding it is its 95%
                [highest density
                interval](https://cran.r-project.org/package=HDInterval).

                ''')
            with gr.Column():
                models = df['model'].unique()
                choices = sorted(models, key=lambda x: x.lower())
                drops = ft.partial(gr.Dropdown, choices=choices)
                inputs = [ drops(label=f'Model {x}') for x in range(1, 3) ]

                button = gr.Button(value='Compare!')
                button.click(cplot(df), inputs=inputs, outputs=[display])

    with gr.Accordion('Disclaimer', open=False):
        gr.Markdown(docs['disclaimer'])

#
#
#
with gr.Blocks() as demo:
    tabs = it.starmap(TabGroup, (
        ('Alpaca', 'alpaca', 'alpaca-bt-stan'),
        ('Chatbot Arena', 'arena', 'arena-bt-stan'),
    ))

    for t in tabs:
        with gr.Tab(t.name):
            layout(t)

demo.launch()