Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	File size: 1,243 Bytes
			
			| 53149f2 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 | import streamlit as st
import sounddevice as sd
import tempfile
from scipy.io.wavfile import write
import whisper
import numpy as np
if 'recording' not in st.session_state:
    st.session_state.recording = False
def start_recording():
    st.session_state.recording = True
    st.write("Recording started... Click 'Stop' to end.")
    return sd.rec(int(10 * 44100), samplerate=44100, channels=1, dtype='float64', blocking=False)
def stop_recording(recording):
    st.session_state.recording = False
    sd.stop()
    st.write("Converting speech to text...")
    temp_file = tempfile.NamedTemporaryFile(delete=False, suffix='.wav')
    write(temp_file.name, 44100, recording)
    return temp_file.name
def transcribe_audio(file_path):
    model = whisper.load_model("base")
    result = model.transcribe(file_path)
    return result['text']
# Streamlit UI
st.title("🗣️Brise")
if st.button('Start Recording') and not st.session_state.recording:
    st.session_state.audio_data = start_recording()
if st.button('Stop Recording') and st.session_state.recording:
    file_path = stop_recording(st.session_state.audio_data)
    transcription = transcribe_audio(file_path)
    st.text_area("Transcription", value=transcription, height=200) | 
