File size: 4,722 Bytes
0d93147
 
164b72b
 
 
 
0d93147
164b72b
 
 
 
 
 
0d93147
164b72b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d93147
 
164b72b
 
 
 
0d93147
164b72b
 
 
 
0d93147
164b72b
 
 
 
 
 
 
 
 
 
 
0d93147
164b72b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bee4e06
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
import gradio as gr
import torch
import numpy as np
import scipy.io.wavfile
from transformers import VitsModel, AutoTokenizer
import re

# Load model and tokenizer
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()

# Numbers in Somali
number_words = {
    0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
    6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
    11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
    14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
    17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
    20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
    60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
    100: "boqol", 1000: "kun"
}

def number_to_words(number):
    number = int(number)
    if number < 20:
        return number_words[number]
    elif number < 100:
        tens, unit = divmod(number, 10)
        return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
    elif number < 1000:
        hundreds, remainder = divmod(number, 100)
        part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
        if remainder:
            part += " iyo " + number_to_words(remainder)
        return part
    elif number < 1000000:
        thousands, remainder = divmod(number, 1000)
        words = []
        if thousands == 1:
            words.append("kun")
        else:
            words.append(number_to_words(thousands) + " kun")
        if remainder >= 100:
            hundreds, rem2 = divmod(remainder, 100)
            if hundreds:
                boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
                words.append(boqol_text)
            if rem2:
                words.append("iyo " + number_to_words(rem2))
        elif remainder:
            words.append("iyo " + number_to_words(remainder))
        return " ".join(words)
    elif number < 1000000000:
        millions, remainder = divmod(number, 1000000)
        words = []
        if millions == 1:
            words.append("milyan")
        else:
            words.append(number_to_words(millions) + " milyan")
        if remainder:
            words.append(number_to_words(remainder))
        return " ".join(words)
    else:
        return str(number)

def normalize_text(text):
    text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text)
    text = re.sub(r'\.\d+', '', text)
    def replace_num(match):
        return number_to_words(match.group())
    text = re.sub(r'\d+', replace_num, text)
    symbol_map = {
        '$': 'doolar',
        '=': 'egwal',
        '+': 'balaas',
        '#': 'haash'
    }
    for sym, word in symbol_map.items():
        text = text.replace(sym, ' ' + word + ' ')
    text = text.replace("KH", "qa").replace("Z", "S")
    text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
    text = text.replace("ZamZam", "SamSam")
    return text

def tts(text):
    paragraphs = text.strip().split("\n")
    audio_list = []
    max_chars = 500  # Qiyaasta ugu badan 2 daqiiqo
    warn_msg = ""

    for i, para in enumerate(paragraphs):
        para = para.strip()
        if not para:
            continue

        if len(para) > max_chars:
            warn_msg += f"❗ Qaybta {i+1} aad ayaa ka badan 2 daqiiqo. Waan kala jaray.\n"
            sub_parts = [para[j:j+max_chars] for j in range(0, len(para), max_chars)]
        else:
            sub_parts = [para]

        for part in sub_parts:
            norm_para = normalize_text(part)
            inputs = tokenizer(norm_para, return_tensors="pt").to(device)
            with torch.no_grad():
                waveform = model(**inputs).waveform.squeeze().cpu().numpy()

            pause = np.zeros(int(model.config.sampling_rate * 0.8))  # 0.8s pause
            audio_list.append(np.concatenate((waveform, pause)))

    final_audio = np.concatenate(audio_list)
    filename = "output.wav"
    scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(final_audio * 32767).astype(np.int16))

    if warn_msg:
        print(warn_msg)
    return filename

# Gradio interface
gr.Interface(
    fn=tts,
    inputs=gr.Textbox(label="Geli qoraal Soomaali ah", lines=10, placeholder="Ku qor 1 ama in ka badan paragraph..."),
    outputs=gr.Audio(label="Codka TTS"),
    title="Somali TTS",
    description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah. Qoraalka ha ka badnaan 2 daqiiqo per jumlad."
).launch()