Spaces:
Runtime error
Runtime error
File size: 4,722 Bytes
0d93147 164b72b 0d93147 164b72b 0d93147 164b72b 0d93147 164b72b 0d93147 164b72b 0d93147 164b72b 0d93147 164b72b bee4e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 |
import gradio as gr
import torch
import numpy as np
import scipy.io.wavfile
from transformers import VitsModel, AutoTokenizer
import re
# Load model and tokenizer
model = VitsModel.from_pretrained("Somali-tts/somali_tts_model")
tokenizer = AutoTokenizer.from_pretrained("saleolow/somali-mms-tts")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
# Numbers in Somali
number_words = {
0: "eber", 1: "koow", 2: "labo", 3: "seddex", 4: "afar", 5: "shan",
6: "lix", 7: "todobo", 8: "sideed", 9: "sagaal", 10: "toban",
11: "toban iyo koow", 12: "toban iyo labo", 13: "toban iyo seddex",
14: "toban iyo afar", 15: "toban iyo shan", 16: "toban iyo lix",
17: "toban iyo todobo", 18: "toban iyo sideed", 19: "toban iyo sagaal",
20: "labaatan", 30: "sodon", 40: "afartan", 50: "konton",
60: "lixdan", 70: "todobaatan", 80: "sideetan", 90: "sagaashan",
100: "boqol", 1000: "kun"
}
def number_to_words(number):
number = int(number)
if number < 20:
return number_words[number]
elif number < 100:
tens, unit = divmod(number, 10)
return number_words[tens * 10] + (" iyo " + number_words[unit] if unit else "")
elif number < 1000:
hundreds, remainder = divmod(number, 100)
part = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
if remainder:
part += " iyo " + number_to_words(remainder)
return part
elif number < 1000000:
thousands, remainder = divmod(number, 1000)
words = []
if thousands == 1:
words.append("kun")
else:
words.append(number_to_words(thousands) + " kun")
if remainder >= 100:
hundreds, rem2 = divmod(remainder, 100)
if hundreds:
boqol_text = (number_words[hundreds] + " boqol") if hundreds > 1 else "boqol"
words.append(boqol_text)
if rem2:
words.append("iyo " + number_to_words(rem2))
elif remainder:
words.append("iyo " + number_to_words(remainder))
return " ".join(words)
elif number < 1000000000:
millions, remainder = divmod(number, 1000000)
words = []
if millions == 1:
words.append("milyan")
else:
words.append(number_to_words(millions) + " milyan")
if remainder:
words.append(number_to_words(remainder))
return " ".join(words)
else:
return str(number)
def normalize_text(text):
text = re.sub(r'(\d{1,3})(,\d{3})+', lambda m: m.group(0).replace(",", ""), text)
text = re.sub(r'\.\d+', '', text)
def replace_num(match):
return number_to_words(match.group())
text = re.sub(r'\d+', replace_num, text)
symbol_map = {
'$': 'doolar',
'=': 'egwal',
'+': 'balaas',
'#': 'haash'
}
for sym, word in symbol_map.items():
text = text.replace(sym, ' ' + word + ' ')
text = text.replace("KH", "qa").replace("Z", "S")
text = text.replace("SH", "SHa'a").replace("DH", "Dha'a")
text = text.replace("ZamZam", "SamSam")
return text
def tts(text):
paragraphs = text.strip().split("\n")
audio_list = []
max_chars = 500 # Qiyaasta ugu badan 2 daqiiqo
warn_msg = ""
for i, para in enumerate(paragraphs):
para = para.strip()
if not para:
continue
if len(para) > max_chars:
warn_msg += f"❗ Qaybta {i+1} aad ayaa ka badan 2 daqiiqo. Waan kala jaray.\n"
sub_parts = [para[j:j+max_chars] for j in range(0, len(para), max_chars)]
else:
sub_parts = [para]
for part in sub_parts:
norm_para = normalize_text(part)
inputs = tokenizer(norm_para, return_tensors="pt").to(device)
with torch.no_grad():
waveform = model(**inputs).waveform.squeeze().cpu().numpy()
pause = np.zeros(int(model.config.sampling_rate * 0.8)) # 0.8s pause
audio_list.append(np.concatenate((waveform, pause)))
final_audio = np.concatenate(audio_list)
filename = "output.wav"
scipy.io.wavfile.write(filename, rate=model.config.sampling_rate, data=(final_audio * 32767).astype(np.int16))
if warn_msg:
print(warn_msg)
return filename
# Gradio interface
gr.Interface(
fn=tts,
inputs=gr.Textbox(label="Geli qoraal Soomaali ah", lines=10, placeholder="Ku qor 1 ama in ka badan paragraph..."),
outputs=gr.Audio(label="Codka TTS"),
title="Somali TTS",
description="Ku qor qoraal Soomaaliyeed si aad u maqasho cod dabiici ah. Qoraalka ha ka badnaan 2 daqiiqo per jumlad."
).launch()
|