Spaces:
Runtime error
Runtime error
File size: 15,233 Bytes
3f362c0 243da15 78ed328 243da15 6043dd9 243da15 6043dd9 243da15 6043dd9 7e62304 3f362c0 7e62304 3f362c0 7e62304 3f362c0 7e62304 3f362c0 70d2f66 8b07bee 6043dd9 3f362c0 7e62304 243da15 70d2f66 8b07bee 3f362c0 243da15 3027a6c 243da15 3027a6c 243da15 3f362c0 6043dd9 3f362c0 7e62304 3f362c0 70d2f66 8b07bee 3f362c0 70d2f66 34a8736 6043dd9 70d2f66 34a8736 6043dd9 70d2f66 34a8736 7e62304 70d2f66 34a8736 70d2f66 34a8736 8b07bee 6043dd9 34a8736 70d2f66 6043dd9 34a8736 243da15 70d2f66 243da15 34a8736 243da15 6043dd9 34a8736 6043dd9 243da15 6043dd9 243da15 34a8736 243da15 34a8736 243da15 6043dd9 243da15 70d2f66 6043dd9 34a8736 243da15 6043dd9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 |
import math
import yaml
import gradio as gr
import huggingface_hub
import torch
import torch.nn as nn
import torch.nn.functional as F
mlp_config_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"torch_mlp_config.yaml")
mlp_weights_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"mlp_weights.pt")
wavenet_config_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"wavenet_config.yaml")
wavenet_weights_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"wavenet_weights.pt")
gpt_micro_config_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"micro_gpt_config.yaml")
gpt_micro_weights_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"micro_gpt_weights.pt")
gpt_rev_config_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"rev_gpt_config.yaml")
gpt_rev_weights_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"rev_gpt_weights.pt")
gpt_first_rev_config_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"first_name_gpt_config.yaml")
gpt_first_rev_weights_path = huggingface_hub.hf_hub_download(
"jefsnacker/surname_generator",
"first_name_gpt_weights.pt")
with open(mlp_config_path, 'r') as file:
mlp_config = yaml.safe_load(file)
with open(wavenet_config_path, 'r') as file:
wavenet_config = yaml.safe_load(file)
with open(gpt_micro_config_path, 'r') as file:
gpt_micro_config = yaml.safe_load(file)
with open(gpt_rev_config_path, 'r') as file:
gpt_rev_config = yaml.safe_load(file)
with open(gpt_first_rev_config_path, 'r') as file:
gpt_first_rev_config = yaml.safe_load(file)
##################################################################################
## MLP
##################################################################################
class MLP(nn.Module):
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
super(MLP, self).__init__()
self.window = window
self.hidden_nodes = hidden_nodes
self.embeddings = embeddings
self.C = nn.Parameter(torch.randn((num_char, embeddings)) * 0.1, requires_grad=True)
self.first = nn.Linear(embeddings*window, hidden_nodes)
self.layers = nn.Sequential()
for i in range(num_layers):
self.layers = self.layers.extend(nn.Sequential(
nn.Linear(hidden_nodes, hidden_nodes, bias=False),
nn.BatchNorm1d(hidden_nodes),
nn.Tanh()))
self.final = nn.Linear(hidden_nodes, num_char)
def forward(self, x):
x = self.C[x]
x = self.first(x.view(-1, self.window*self.embeddings))
x = self.layers(x)
x = self.final(x)
return x
def sample_char(self, x):
logits = self(x)
probs = F.softmax(logits, dim=1)
return torch.multinomial(probs, num_samples=1).item()
mlp = MLP(mlp_config['num_char'],
mlp_config['hidden_nodes'],
mlp_config['embeddings'],
mlp_config['window'],
mlp_config['num_layers'])
mlp.load_state_dict(torch.load(mlp_weights_path))
mlp.eval()
##################################################################################
## WaveNet
##################################################################################
class WaveNet(nn.Module):
def __init__(self, num_char, hidden_nodes, embeddings, window, num_layers):
super(WaveNet, self).__init__()
self.window = window
self.hidden_nodes = hidden_nodes
self.embeddings = embeddings
self.layers = nn.Sequential(
nn.Embedding(num_char, embeddings)
)
for i in range(num_layers):
if i == 0:
nodes = window
else:
nodes = hidden_nodes
self.layers = self.layers.extend(nn.Sequential(
nn.Conv1d(nodes, hidden_nodes, kernel_size=2, stride=1, bias=False),
nn.BatchNorm1d(hidden_nodes),
nn.Tanh()))
self.layers = self.layers.extend(nn.Sequential(
nn.Flatten(),
nn.Linear(hidden_nodes*(embeddings-num_layers), num_char)
))
def forward(self, x):
return self.layers(x)
def sample_char(self, x):
logits = self(x)
probs = F.softmax(logits, dim=1)
return torch.multinomial(probs, num_samples=1).item()
wavenet = WaveNet(wavenet_config['num_char'],
wavenet_config['hidden_nodes'],
wavenet_config['embeddings'],
wavenet_config['window'],
wavenet_config['num_layers'])
wavenet.load_state_dict(torch.load(wavenet_weights_path))
wavenet.eval()
##################################################################################
## Transformer
##################################################################################
class NewGELU(nn.Module):
"""
Gaussian Error Linear Units (GELU) paper: https://arxiv.org/abs/1606.08415
"""
def forward(self, x):
return 0.5 * x * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi) * (x + 0.044715 * torch.pow(x, 3.0))))
class GptAttention(nn.Module):
"""
For this attention module k = v = q are all the same.
It's for encoder/decoder only transfomers.
"""
def __init__(self, config):
super(GptAttention, self).__init__()
self.config = config
assert self.config["d_model"] % self.config["heads"] == 0
self.heads = self.config["heads"]
self.w_attn = nn.Linear(self.config["d_model"], 3*self.config["d_model"])
self.head = nn.Linear(self.config["d_model"], self.config["d_model"])
self.attn_dropout = nn.Dropout(config["attn_pdrop"])
self.resid_dropout = nn.Dropout(config["resid_pdrop"])
# causal mask to ensure that attention is only applied to the left in the input sequence
self.register_buffer(
"bias",
torch.tril(
torch.ones(
self.config["window"],
self.config["window"])
).view(1, 1, self.config["window"], self.config["window"])
)
def forward(self, x):
B, window, embs = x.shape
q, v, k = self.w_attn(x).split(self.config["d_model"], dim=2)
# (B, heads, window, embs)
q = q.view(
B,
window,
self.config["heads"],
embs // self.config["heads"]
).transpose(1, 2)
k = k.view(
B,
window,
self.config["heads"],
embs // self.config["heads"]
).transpose(1, 2)
v = v.view(
B,
window,
self.config["heads"],
embs // self.config["heads"]
).transpose(1, 2)
# Self-attend: (B, heads, window, embs) x (B, heads, embs, window) -> (B, heads, window, window)
scores = q @ k.transpose(-2, -1) / math.sqrt(k.size(-1))
mask = scores.masked_fill(self.bias[:,:,:window,:window] == 0, float('-inf'))
probs = F.softmax(mask, dim=-1)
attn = self.attn_dropout(probs)
attn = probs @ v
attn = attn.transpose(1, 2).contiguous().view(B, window, embs)
return self.resid_dropout(self.head(attn))
class FeedForward(nn.Module):
def __init__(self, config):
super(FeedForward, self).__init__()
self.l1 = nn.Linear(config["d_model"], 4*config["d_model"])
self.l2 = nn.Linear(4*config["d_model"], config["d_model"])
self.dropout = nn.Dropout(config["resid_pdrop"])
def forward(self, x):
x = NewGELU()(self.l1(x))
return self.dropout(self.l2(x))
class Block(nn.Module):
def __init__(self, config):
super(Block, self).__init__()
self.attn = GptAttention(config)
self.norm1 = nn.LayerNorm(config["d_model"])
self.ff = FeedForward(config)
self.norm2 = nn.LayerNorm(config["d_model"])
def forward(self, x):
x = self.norm1(x + self.attn(x))
x = self.norm2(x + self.ff(x))
return x
class GPT(nn.Module):
def __init__(self, config):
super(GPT, self).__init__()
self.config = config
self.vocab_emb = nn.Embedding(self.config["vocab"], self.config["d_model"])
self.pos_emb = nn.Embedding(self.config["window"], self.config["d_model"])
self.emb_dropout = nn.Dropout(config["embd_pdrop"])
self.blocks = nn.ModuleList([Block(self.config) for _ in range(self.config["blocks"])])
self.head_layer_norm = nn.LayerNorm(config["d_model"])
self.head = nn.Linear(self.config["d_model"], self.config["vocab"])
def forward(self, x):
vocab_emb = self.vocab_emb(x)
pos_emb = self.pos_emb(torch.arange(0, x.shape[1], dtype=torch.long, device=x.device))
x = self.emb_dropout(vocab_emb + pos_emb)
for b in self.blocks:
x = b(x)
x = self.head_layer_norm(x)
x = self.head(x)
return x
def configure_opt(self):
p_decay = set()
p_no_decay = set()
whitelist_weight_modules = (torch.nn.Linear, )
blacklist_weight_modules = (torch.nn.LayerNorm, torch.nn.Embedding)
for mn, m in self.named_modules():
for pn, p in m.named_parameters():
fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
# random note: because named_modules and named_parameters are recursive
# we will see the same tensors p many many times. but doing it this way
# allows us to know which parent module any tensor p belongs to...
if pn.endswith('bias'):
# all biases will not be decayed
p_no_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# weights of whitelist modules will be weight decayed
p_decay.add(fpn)
elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# weights of blacklist modules will NOT be weight decayed
p_no_decay.add(fpn)
# validate that we considered every parameter
param_dict = {pn: p for pn, p in self.named_parameters()}
inter_params = p_decay & p_no_decay
union_params = p_decay | p_no_decay
assert len(inter_params) == 0, "parameters %s made it into both decay/no_decay sets!" % (str(inter_params), )
assert len(param_dict.keys() - union_params) == 0, "parameters %s were not separated into either decay/no_decay set!" \
% (str(param_dict.keys() - union_params), )
# create the pytorch optimizer object
optim_groups = [
{"params": [param_dict[pn] for pn in sorted(list(p_decay))], "weight_decay": self.config["weight_decay"]},
{"params": [param_dict[pn] for pn in sorted(list(p_no_decay))], "weight_decay": 0.0},
]
optimizer = torch.optim.AdamW(
optim_groups,
lr=self.config["lr"],
betas=(self.config["b1"], self.config["b2"])
)
return optimizer
def sample_char(self, x):
logits = self(x)
probs = F.softmax(logits[:,-1,:], dim=1)
return torch.multinomial(probs, num_samples=1).item()
gpt_micro = GPT(gpt_micro_config)
gpt_micro.load_state_dict(torch.load(gpt_micro_weights_path))
gpt_micro.eval()
gpt_rev = GPT(gpt_rev_config)
gpt_rev.load_state_dict(torch.load(gpt_rev_weights_path))
gpt_rev.eval()
gpt_first_rev = GPT(gpt_first_rev_config)
gpt_first_rev.load_state_dict(torch.load(gpt_first_rev_weights_path))
gpt_first_rev.eval()
##################################################################################
## Gradio App
##################################################################################
def generate_names(name_start, name_end, number_of_names, model):
if number_of_names < 0:
return "Error: Please enter a positive number of names to generate!"
# Select model
if model == "MLP":
config = mlp_config
sample_fcn = mlp.sample_char
elif model == "WaveNet":
config = wavenet_config
sample_fcn = wavenet.sample_char
elif model == "GPT Micro":
config = gpt_micro_config
sample_fcn = gpt_micro.sample_char
elif model == "GPT Rev":
config = gpt_rev_config
sample_fcn = gpt_rev.sample_char
elif model == "GPT First Rev":
config = gpt_first_rev_config
sample_fcn = gpt_first_rev.sample_char
else:
return "Error: Model not selected"
stoi = config['stoi']
itos = {s:i for i,s in stoi.items()}
output = ""
# Sanitize user inputs, and append errors to output
name_end = name_end.lower()
name_start = name_start.lower()
for c in name_end:
if c not in stoi:
return "Please change name end. \"" + c + "\" not included in the training set."
for c in name_start:
if c not in stoi:
return "Please change name start. \"" + c + "\" not included in the training set."
if "num_final_chars_in_dataset" in config and len(name_end) > config["num_final_chars_in_dataset"]:
name_end = name_end[-config["num_final_chars_in_dataset"]:]
output += "Only accepts up to " + str(config["num_final_chars_in_dataset"]) + " final chars. Using: " + str(name_end) + "\n"
elif "num_final_chars_in_dataset" not in config and name_end != "":
output += "Final chars not used. Need to use a \"Rev\" model trained with this feature.\n"
## Print requested names
for _ in range((int)(number_of_names)):
name = ""
context = [0] * config['window']
if "num_final_chars_in_dataset" in config:
for c in name_end:
context = context[1:] + [stoi[c]]
context = context[1:] + [stoi['.']]
# Initialize name with user input
for c in name_start:
name += c
context = context[1:] + [stoi[c]]
# Run inference to finish off the name
while True:
x = torch.tensor(context).view(1, -1)
ix = sample_fcn(x)
context = context[1:] + [ix]
name += itos[ix]
if ix == 0:
break
output += name + "\n"
return output
demo = gr.Interface(
fn=generate_names,
inputs=[
gr.Textbox(placeholder="Start name with..."),
gr.Textbox(placeholder="End name with... (only works for rev model)"),
gr.Number(value=5),
gr.Dropdown(["MLP", "WaveNet", "GPT Micro", "GPT Rev", "GPT First Rev"], value="GPT Rev"),
],
outputs="text",
)
demo.launch() |