File size: 10,527 Bytes
01f65eb
 
 
 
 
 
 
 
 
 
eb76698
01f65eb
 
 
 
 
 
 
af77b0c
01f65eb
 
 
274f98b
 
01f65eb
2e76149
 
a3f1f28
01f65eb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import time
import datetime
import torch
import numpy as np
import tqdm
import random
from torch import nn
from transformers import RobertaTokenizer, RobertaModel, AdamW, RobertaConfig
from sklearn.model_selection import train_test_split

from transformers import BertTokenizer, BertForSequenceClassification, get_linear_schedule_with_warmup, AutoModel, AutoTokenizer
from torch.utils.data import TensorDataset, random_split, DataLoader, RandomSampler, SequentialSampler


class BERTClassifier():


    def __init__(self, model_name="bert-base-uncased", tokenizer_name="bert-base-uncased") -> None:
        print(f'Loading BERT:{model_name}...')
        
        self.model_name = model_name
        
        # self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
        self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name, do_lower_case=True)
        
        if model_name.startswith('jeevavijay10'):
            # self.model = torch.load(model_name)
            self.model = BertForSequenceClassification.from_pretrained(model_name)
        else:
            self.model = BertForSequenceClassification.from_pretrained(
                self.model_name,
                num_labels=14,
                output_attentions=False,
                output_hidden_states=False
            )

        self.device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

        self.model.to(self.device)

    def tokenizeText(self, sentence: str):
        # return self.tokenizer.encode(sentence, add_special_tokens=True)
        encoded_dict = self.tokenizer.encode_plus(
            sentence,
            add_special_tokens=True,
            max_length=64,
            pad_to_max_length=True,
            return_attention_mask=True,
            return_tensors='pt')
        return encoded_dict['input_ids'], encoded_dict['attention_mask']

    def tokenizeSentences(self, sentences: list, labels: list):
        input_ids = []
        attention_masks = []
        for sent in sentences:
            input_id, attention_mask = self.tokenizeText(sent)
            input_ids.append(input_id)
            attention_masks.append(attention_mask)

        input_ids = torch.cat(input_ids, dim=0)
        attention_masks = torch.cat(attention_masks, dim=0)

        dataset = TensorDataset(input_ids, attention_masks, labels)

        train_size = int(0.9 * len(dataset))
        val_size = len(dataset) - train_size
        return random_split(dataset, [train_size, val_size])
    
    def flat_accuracy(self, preds, labels):
        pred_flat = np.argmax(preds, axis=1).flatten()
        labels_flat = labels.flatten()
        return np.sum(pred_flat == labels_flat) / len(labels_flat)
    
    def format_time(self, elapsed):
        # Round to the nearest second.
        elapsed_rounded = int(round((elapsed)))
        
        # Format as hh:mm:ss
        return str(datetime.timedelta(seconds=elapsed_rounded))

    def trainModel(self, sentences: list, labels: list, epochs=4, batch_size=32):
        optimizer = AdamW(self.model.parameters(), lr=2e-5, eps=1e-8)

        train_dataset, val_dataset = self.tokenizeSentences(sentences, labels)

        train_dataloader = DataLoader(
            train_dataset,
            sampler=RandomSampler(train_dataset),
            batch_size=batch_size
        )

        validation_dataloader = DataLoader(
            val_dataset, 
            sampler=SequentialSampler(val_dataset),
            batch_size=batch_size
        )

        total_steps = len(train_dataloader) * epochs

        # Create the learning rate scheduler.
        scheduler = get_linear_schedule_with_warmup(optimizer,
                                                    num_warmup_steps=0,  # Default value in run_glue.py
                                                    num_training_steps=total_steps)
        
        self.train(train_dataloader, optimizer, scheduler, epochs)
        torch.save(self.model, f"Bert_GoEmotions_BS{batch_size}_E{epochs}.model")
        
        
    def train(self, train_dataloader, optimizer, scheduler, epochs):
        # This training code is based on the `run_glue.py` script here:
        # https://github.com/huggingface/transformers/blob/5bfcd0485ece086ebcbed2d008813037968a9e58/examples/run_glue.py#L128

        # Measure the total training time for the whole run.
        total_t0 = time.time()

        # For each epoch...
        for epoch_i in range(epochs):
            print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
            print('Training...')

            # Measure how long the training epoch takes.
            t0 = time.time()

            # Reset the total loss for this epoch.
            total_train_loss = 0

            # Put the model into training mode. Don't be mislead--the call to 
            # `train` just changes the *mode*, it doesn't *perform* the training.
            # `dropout` and `batchnorm` layers behave differently during training
            # vs. test (source: https://stackoverflow.com/questions/51433378/what-does-model-train-do-in-pytorch)
            self.model.train()

            # For each batch of training data...
            for step, batch in enumerate(train_dataloader):

                # Progress update every 40 batches.
                if step % 40 == 0 and step != 0:
                    # Calculate elapsed time in minutes.
                    elapsed = self.format_time(time.time() - t0)

                    # Report progress.
                    print('  Batch {:>5,}  of  {:>5,}.    Elapsed: {:}.'.format(step, len(train_dataloader), elapsed))

                # Unpack this training batch from our dataloader. 
                #
                # As we unpack the batch, we'll also copy each tensor to the GPU using the 
                # `to` method.
                #
                # `batch` contains three pytorch tensors:
                #   [0]: input ids 
                #   [1]: attention masks
                #   [2]: labels 
                b_input_ids = batch[0].to(self.device)
                b_input_mask = batch[1].to(self.device)
                b_labels = batch[2].to(self.device)

                # Always clear any previously calculated gradients before performing a
                # backward pass. PyTorch doesn't do this automatically because 
                # accumulating the gradients is "convenient while training RNNs". 
                # (source: https://stackoverflow.com/questions/48001598/why-do-we-need-to-call-zero-grad-in-pytorch)
                self.model.zero_grad()        

                # Perform a forward pass (evaluate the model on this training batch).
                # The documentation for this `model` function is here: 
                # https://huggingface.co/transformers/v2.2.0/model_doc/bert.html#transformers.BertForSequenceClassification
                # It returns different numbers of parameters depending on what arguments
                # arge given and what flags are set. For our useage here, it returns
                # the loss (because we provided labels) and the "logits"--the model
                # outputs prior to activation.

                output = self.model(b_input_ids, 
                                    token_type_ids=None, 
                                    attention_mask=b_input_mask, 
                                    labels=b_labels)


                loss = output.loss
                logits = output.logits

                # Accumulate the training loss over all of the batches so that we can
                # calculate the average loss at the end. `loss` is a Tensor containing a
                # single value; the `.item()` function just returns the Python value 
                # from the tensor.
                total_train_loss += loss.item()

                # Perform a backward pass to calculate the gradients.
                loss.backward()

                # Clip the norm of the gradients to 1.0.
                # This is to help prevent the "exploding gradients" problem.
                torch.nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)

                # Update parameters and take a step using the computed gradient.
                # The optimizer dictates the "update rule"--how the parameters are
                # modified based on their gradients, the learning rate, etc.
                optimizer.step()

                # Update the learning rate.
                scheduler.step()

            # Calculate the average loss over all of the batches.
            avg_train_loss = total_train_loss / len(train_dataloader)            

            # Measure how long this epoch took.
            training_time = self.format_time(time.time() - t0)

            print("")
            print("  Average training loss: {0:.2f}".format(avg_train_loss))
            print("  Training epoch took: {:}".format(training_time))

        print("")
        print("Training complete!")

        print("Total training took {:} (h:mm:ss)".format(self.format_time(time.time()-total_t0)))

    def evaluate(self, sentences:list):
        input_ids = [] 
        attention_masks = []
        
        for sent in sentences:            
            input_id, attention_mask = self.tokenizeText(sent)
            input_ids.append(input_id)
            attention_masks.append(attention_mask)
        
        input_ids = torch.cat(input_ids, dim=0)
        attention_masks = torch.cat(attention_masks, dim=0)
        labels = torch.zeros(len(sentences))

        batch_size = 32

        prediction_data = TensorDataset(input_ids, attention_masks, labels)
        prediction_sampler = SequentialSampler(prediction_data)
        prediction_dataloader = DataLoader(prediction_data, sampler=prediction_sampler, batch_size=batch_size)
        
        self.model.eval()
        
        predictions = []
        
        for batch in prediction_dataloader:
            batch = tuple(t.to(self.device) for t in batch)
            
            b_input_ids, b_input_mask, _ = batch
            
            with torch.no_grad():
                outputs = self.model(b_input_ids, token_type_ids=None, 
                                attention_mask=b_input_mask)

            logits = outputs[0]

            logits = logits.detach().cpu().numpy()
            predictions.append(logits)
            
        # print(predictions)
        return [predictions[0][i].argmax() for i, x in enumerate(sentences)]