File size: 20,246 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
import copy
from typing import Dict, Sequence
import torch
import transformers
from llava.constants import (
    IGNORE_INDEX,
    DEFAULT_IMAGE_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    IMAGE_TOKEN_INDEX,
)
from llava import conversation as conversation_lib
from llava.mm_utils import tokenizer_image_token


def _tokenize_fn(strings: Sequence[str], tokenizer: transformers.PreTrainedTokenizer) -> Dict:
    """Tokenize a list of strings."""
    tokenized_list = [
        tokenizer(
            text,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        )
        for text in strings
    ]
    input_ids = labels = [tokenized.input_ids[0] for tokenized in tokenized_list]
    input_ids_lens = labels_lens = [
        tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() for tokenized in tokenized_list
    ]
    return dict(
        input_ids=input_ids,
        labels=labels,
        input_ids_lens=input_ids_lens,
        labels_lens=labels_lens,
    )


def _mask_targets(target, tokenized_lens, speakers):
    # cur_idx = 0
    cur_idx = tokenized_lens[0]
    tokenized_lens = tokenized_lens[1:]
    target[:cur_idx] = IGNORE_INDEX
    for tokenized_len, speaker in zip(tokenized_lens, speakers):
        if speaker == "human":
            target[cur_idx + 2 : cur_idx + tokenized_len] = IGNORE_INDEX
        cur_idx += tokenized_len


def _add_speaker_and_signal(header, source, get_conversation=True):
    """Add speaker and start/end signal on each round."""
    BEGIN_SIGNAL = "### "
    END_SIGNAL = "\n"
    conversation = header
    for sentence in source:
        from_str = sentence["from"]
        if from_str.lower() == "human":
            from_str = conversation_lib.default_conversation.roles[0]
        elif from_str.lower() == "gpt":
            from_str = conversation_lib.default_conversation.roles[1]
        else:
            from_str = "unknown"
        sentence["value"] = BEGIN_SIGNAL + from_str + ": " + sentence["value"] + END_SIGNAL
        if get_conversation:
            conversation += sentence["value"]
    conversation += BEGIN_SIGNAL
    return conversation


def preprocess_multimodal(
    sources: Sequence[str], is_multimodal: bool, mm_use_im_start_end: bool
) -> Dict:
    if not is_multimodal:
        return sources

    for source in sources:
        for sentence in source:
            if DEFAULT_IMAGE_TOKEN in sentence["value"]:
                sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, "").strip()
                sentence["value"] = DEFAULT_IMAGE_TOKEN + "\n" + sentence["value"]
                sentence["value"] = sentence["value"].strip()
                if "mmtag" in conversation_lib.default_conversation.version:
                    sentence["value"] = sentence["value"].replace(
                        DEFAULT_IMAGE_TOKEN,
                        "<Image>" + DEFAULT_IMAGE_TOKEN + "</Image>",
                    )
            replace_token = DEFAULT_IMAGE_TOKEN
            if mm_use_im_start_end:
                replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN
            sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token)

    return sources


def preprocess_llama_2(
    sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack(
            [
                tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
                for prompt in conversations
            ],
            dim=0,
        )
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2

    # Mask targets
    sep = "[/INST] "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_llama_2_obj_identifier(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
    obj_dict: Dict[str, Dict],
    obj_context_feature_type: str,
    mode: str,
) -> Dict:
    """This function tokenizes the conversation into the following format:
    %%%% Object-centric context: <obj_0>: <obj_0_feat>; <obj_1>: <obj_1_feat>; ... <obj_i>: <obj_i_feat>;%%%%"
    where <obj_i_feat> is currently placeholered by IMAGE_TOKEN_INDEX
    but will later be replaced by the actual feature in vector form.
    We mark all string tokens as not trainable, only keep the feature vectors trainable.

    Args:
        sources (_type_): the conversation sources
        tokenizer (transformers.PreTrainedTokenizer): the tokenizer
        obj_dict (Dict[str, Dict]): the object dictionary for the scene
        obj_context_feature_type (str): the type of object feature to use for the object context

    Returns:
        Dict: the tokenized input_ids and labels
    """
    conv = conversation_lib.conv_llava_llama_2_obj_identifier.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    input_ids = torch.stack(
        [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations],
        dim=0,
    )

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2

    # Mask targets
    sep = "[/INST] "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            round_len = len(tokenizer_image_token(rou, tokenizer))
            instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if (
            cur_len < tokenizer.model_max_length and mode != "generate"
        ):  # check if target is correctly masked. when generating, we don't have any target
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")

    assert (
        input_ids.shape[0] == targets.shape[0] == 1
    ), "Only support tokenization for one conversation at a time"
    input_id = input_ids[0]
    targets = targets[0]
    # TODO: replace -200 (IMAGE_TOKEN_INDEX) with object identifier tokens,
    # we want the LLM to see:
    # %%%% Object-centric context: <obj_0>: <obj_0_feat>; <obj_1>: <obj_1_feat>; ... <obj_i>: <obj_i_feat>;%%%%"
    # where <obj_i_feat> will later be replaced by the actual feature in vector form,

    if obj_context_feature_type == "vector":
        obj_context = "%%%% Object-centric context:"
        for obj_id, obj_info in obj_dict.items():
            obj_context += f" <{obj_id}>: {tokenizer.sep_token};"  # use </s> as a placeholder, later it will be replaced by the actual feature vector
        obj_context += "%%%%"

        tokenized_obj_context = tokenizer(obj_context).input_ids[
            1:-1
        ]  # strip the bos and eos tokens
        tokenized_obj_context = torch.tensor(tokenized_obj_context, dtype=torch.long)
        tokenized_obj_context[tokenized_obj_context == tokenizer.sep_token_id] = (
            IMAGE_TOKEN_INDEX  # replace </s> with IMAGE_TOKEN_INDEX, so that later we can use -200 to find where the feature vector should be inserted
        )
        # mark all string tokens as not trainable, only keep the feature vectors trainable
        tokenized_obj_context_target = tokenized_obj_context.clone()
        tokenized_obj_context_target[tokenized_obj_context != IMAGE_TOKEN_INDEX] = IGNORE_INDEX
    elif obj_context_feature_type == "text":
        obj_context = "%%%% Object-centric context:"
        for obj_id, obj_info in obj_dict.items():
            obj_context += f" <{obj_id}>: {obj_info};"
        obj_context += "%%%%"

        tokenized_obj_context = tokenizer(obj_context).input_ids[
            1:-1
        ]  # strip the bos and eos tokens
        tokenized_obj_context = torch.tensor(tokenized_obj_context, dtype=torch.long)
        tokenized_obj_context_target = tokenized_obj_context.clone()
        tokenized_obj_context_target[:] = IGNORE_INDEX  # mark all tokens as not trainable

    # now, insert the object context into input_id and target, where the IMAGE_TOKEN_INDEX is
    separation_idx = torch.where(input_id == IMAGE_TOKEN_INDEX)[0]
    input_id_with_obj_context = torch.cat(
        [input_id[:separation_idx], tokenized_obj_context, input_id[separation_idx + 1 :]]
    )
    target_with_obj_context = torch.cat(
        [
            targets[:separation_idx],
            tokenized_obj_context_target,
            targets[separation_idx + 1 :],
        ]
    )

    if obj_context_feature_type == "vector":
        return dict(
            input_ids=input_id_with_obj_context,
            labels=target_with_obj_context,
            obj_dict=obj_dict,  # return the object dictionary so that we can later embed the features
        )
    elif obj_context_feature_type == "text":
        return dict(input_ids=input_id_with_obj_context, labels=target_with_obj_context)


def preprocess_v1(
    sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations

    if has_image:
        input_ids = torch.stack(
            [
                tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
                for prompt in conversations
            ],
            dim=0,
        )
    else:
        input_ids = tokenizer(
            conversations,
            return_tensors="pt",
            padding="longest",
            max_length=tokenizer.model_max_length,
            truncation=True,
        ).input_ids

    targets = input_ids.clone()

    assert conv.sep_style == conversation_lib.SeparatorStyle.TWO

    # Mask targets
    sep = conv.sep + conv.roles[1] + ": "
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep2)
        cur_len = 1
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep

            if has_image:
                round_len = len(tokenizer_image_token(rou, tokenizer))
                instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2
            else:
                round_len = len(tokenizer(rou).input_ids)
                instruction_len = len(tokenizer(parts[0]).input_ids) - 2

            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_mpt(
    sources,
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    conv = conversation_lib.default_conversation.copy()
    roles = {"human": conv.roles[0], "gpt": conv.roles[1]}

    # Apply prompt templates
    conversations = []
    for i, source in enumerate(sources):
        if roles[source[0]["from"]] != conv.roles[0]:
            # Skip the first one if it is not from human
            source = source[1:]

        conv.messages = []
        for j, sentence in enumerate(source):
            role = roles[sentence["from"]]
            assert role == conv.roles[j % 2], f"{i}"
            conv.append_message(role, sentence["value"])
        conversations.append(conv.get_prompt())

    # Tokenize conversations
    input_ids = torch.stack(
        [tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations],
        dim=0,
    )
    targets = input_ids.clone()
    assert conv.sep_style == conversation_lib.SeparatorStyle.MPT

    # Mask targets
    sep = conv.sep + conv.roles[1]
    for conversation, target in zip(conversations, targets):
        total_len = int(target.ne(tokenizer.pad_token_id).sum())

        rounds = conversation.split(conv.sep)
        re_rounds = [conv.sep.join(rounds[:3])]  # system + user + gpt
        for conv_idx in range(3, len(rounds), 2):
            re_rounds.append(conv.sep.join(rounds[conv_idx : conv_idx + 2]))  # user + gpt
        cur_len = 0
        target[:cur_len] = IGNORE_INDEX
        for i, rou in enumerate(re_rounds):
            if rou == "":
                break

            parts = rou.split(sep)
            if len(parts) != 2:
                break
            parts[0] += sep
            round_len = len(tokenizer_image_token(rou, tokenizer)) + len(
                tokenizer_image_token(conv.sep, tokenizer)
            )
            instruction_len = len(tokenizer_image_token(parts[0], tokenizer))
            target[cur_len : cur_len + instruction_len] = IGNORE_INDEX

            cur_len += round_len
        target[cur_len:] = IGNORE_INDEX

        if cur_len < tokenizer.model_max_length:
            if cur_len != total_len:
                target[:] = IGNORE_INDEX
                print(f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." f" (ignored)")

    return dict(
        input_ids=input_ids,
        labels=targets,
    )


def preprocess_plain(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
) -> Dict:
    # add end signal and concatenate together
    conversations = []
    for source in sources:
        assert len(source) == 2
        assert DEFAULT_IMAGE_TOKEN in source[0]["value"]
        source[0]["value"] = DEFAULT_IMAGE_TOKEN
        conversation = (
            source[0]["value"] + source[1]["value"] + conversation_lib.default_conversation.sep
        )
        conversations.append(conversation)
    # tokenize conversations
    input_ids = [
        tokenizer_image_token(prompt, tokenizer, return_tensors="pt") for prompt in conversations
    ]
    targets = copy.deepcopy(input_ids)
    for target, source in zip(targets, sources):
        tokenized_len = len(tokenizer_image_token(source[0]["value"], tokenizer))
        target[:tokenized_len] = IGNORE_INDEX

    return dict(input_ids=input_ids, labels=targets)


def preprocess(
    sources: Sequence[str],
    tokenizer: transformers.PreTrainedTokenizer,
    has_image: bool = False,
) -> Dict:
    """
    Given a list of sources, each is a conversation list. This transform:
    1. Add signal '### ' at the beginning each sentence, with end signal '\n';
    2. Concatenate conversations together;
    3. Tokenize the concatenated conversation;
    4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX.
    """
    if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN:
        return preprocess_plain(sources, tokenizer)
    if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2:
        return preprocess_llama_2(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.version.startswith("v1"):
        return preprocess_v1(sources, tokenizer, has_image=has_image)
    if conversation_lib.default_conversation.version == "mpt":
        return preprocess_mpt(sources, tokenizer)
    # add end signal and concatenate together
    conversations = []
    for source in sources:
        header = f"{conversation_lib.default_conversation.system}\n\n"
        conversation = _add_speaker_and_signal(header, source)
        conversations.append(conversation)

    # tokenize conversations
    def get_tokenize_len(prompts):
        return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts]

    if has_image:
        input_ids = [
            tokenizer_image_token(prompt, tokenizer, return_tensors="pt")
            for prompt in conversations
        ]
    else:
        conversations_tokenized = _tokenize_fn(conversations, tokenizer)
        input_ids = conversations_tokenized["input_ids"]

    targets = copy.deepcopy(input_ids)
    for target, source in zip(targets, sources):
        if has_image:
            tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source])
        else:
            tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)[
                "input_ids_lens"
            ]
        speakers = [sentence["from"] for sentence in source]
        _mask_targets(target, tokenized_lens, speakers)

    return dict(input_ids=input_ids, labels=targets)