Spaces:
Running
on
Zero
Running
on
Zero
File size: 20,096 Bytes
947767a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
import torch
import torch.nn as nn
import transformers
from llava.model.utils import get_w
from .multimodal_encoder.builder import build_vision_tower
from llava.constants import (
GROUND_TOKEN,
IGNORE_INDEX,
IMAGE_TOKEN_INDEX,
DEFAULT_IMAGE_PATCH_TOKEN,
DEFAULT_IM_START_TOKEN,
DEFAULT_IM_END_TOKEN,
PROFILE_RUNTIME,
)
import time
from transformers.utils import logging
logger = logging.get_logger("transformers")
class LlavaMetaModel:
def __init__(self, config):
super(LlavaMetaModel, self).__init__(config)
if hasattr(config, "mm_vision_tower"):
self.vision_tower = build_vision_tower(config, delay_load=True)
if self.vision_tower is not None:
self.mm_projector = nn.Linear(
self.vision_tower.hidden_size, config.hidden_size
) # placeholder, this will be re-initialized later in initialize_vision_modules()
def get_vision_tower(self):
vision_tower = getattr(self, "vision_tower", None)
if type(vision_tower) is list:
vision_tower = vision_tower[0]
return vision_tower
def initialize_vision_modules(self, model_args, fsdp=None):
vision_tower = model_args.vision_tower
mm_vision_select_layer = model_args.mm_vision_select_layer
mm_vision_select_feature = model_args.mm_vision_select_feature
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
pretrain_vision_tower = model_args.pretrain_vision_tower
self.config.mm_vision_tower = vision_tower
if hasattr(self, "vision_tower"):
del self.vision_tower
torch.cuda.empty_cache()
vision_tower = build_vision_tower(model_args)
if vision_tower is None:
return
if fsdp is not None and len(fsdp) > 0:
self.vision_tower = [vision_tower]
else:
self.vision_tower = vision_tower
# add these model args to HF config so that they can be saved (used for loading checkpoint)
self.config.use_mm_proj = True
self.config.mm_hidden_size = vision_tower.hidden_size
self.config.mm_vision_select_layer = mm_vision_select_layer
self.config.mm_vision_select_feature = mm_vision_select_feature
self.config.num_points = model_args.num_points
self.config.feature_dim = model_args.feature_dim
self.config.num_latents = model_args.num_latents
self.config.d_latents = model_args.d_latents
self.config.num_cross_attention_heads = model_args.num_cross_attention_heads
self.config.position_encoding_type = model_args.position_encoding_type
if hasattr(self, "mm_projector"):
del self.mm_projector
torch.cuda.empty_cache()
self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)
if pretrain_mm_mlp_adapter is not None:
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")
self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))
torch.cuda.empty_cache()
class LlavaMetaForCausalLM(ABC):
@abstractmethod
def get_model(self):
pass
def get_vision_tower(self):
return self.get_model().get_vision_tower()
def encode_images(self, images):
vision_features_before_mm_projection = self.get_model().get_vision_tower()(
images
) # for minkowski, the output of this step will be float32
vision_features_before_mm_projection = vision_features_before_mm_projection.to(
dtype=self.dtype
) # convert back to the dtype of the LLM (bfloat16 in most cases), no-op if the dtype is already the same
vision_features = self.get_model().mm_projector(
vision_features_before_mm_projection
) # vision_features and mm_projector are both float32
return vision_features, vision_features_before_mm_projection
def prepare_inputs_labels_for_multimodal(
self, input_ids, attention_mask, past_key_values, labels, images
):
vision_tower = self.get_vision_tower()
if vision_tower is None or images is None or input_ids.shape[1] == 1:
if (
past_key_values is not None
and vision_tower is not None
and images is not None
and input_ids.shape[1] == 1
):
attention_mask = torch.ones(
(attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
dtype=attention_mask.dtype,
device=attention_mask.device,
)
vision_features_before_mm_projection = images
return (
input_ids,
attention_mask,
past_key_values,
None,
labels,
vision_features_before_mm_projection,
)
start_time_encode_images = time.time()
if not isinstance(images, SparseTensor) and (type(images) is list or images.ndim == 5):
concat_images = torch.cat([image for image in images], dim=0)
vision_features, vision_features_before_mm_projection = self.encode_images(
concat_images
)
split_sizes = [image.shape[0] for image in images]
vision_features = torch.split(vision_features, split_sizes, dim=0)
vision_features = [x.flatten(0, 1) for x in vision_features]
else:
vision_features, vision_features_before_mm_projection = self.encode_images(images)
if PROFILE_RUNTIME:
logger.info(f"Time to encode images: {time.time() - start_time_encode_images}")
start_time_for_loop = time.time()
new_input_embeds = []
new_labels = [] if labels is not None else None
cur_image_idx = 0
for batch_idx, cur_input_ids in enumerate(input_ids):
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
# multimodal LLM, but the current sample is not multimodal
cur_input_embeds = self.get_model().embed_tokens(cur_input_ids)
cur_input_embeds = (
cur_input_embeds
+ (0.0 * self.get_model().mm_projector(vision_tower.dummy_feature)).sum()
)
new_input_embeds.append(cur_input_embeds)
if labels is not None:
new_labels.append(labels[batch_idx])
cur_image_idx += 1
continue
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
cur_new_input_embeds = []
if labels is not None:
cur_labels = labels[batch_idx]
cur_new_labels = []
assert cur_labels.shape == cur_input_ids.shape
# The following while loop looks for all image tokens in the current sentence
# and replace them with the corresponding image features.
while image_token_indices.numel() > 0:
cur_vision_features = vision_features[cur_image_idx]
image_token_start = image_token_indices[0]
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
cur_new_input_embeds.append(
self.get_model()
.embed_tokens(cur_input_ids[: image_token_start - 1])
.detach()
)
cur_new_input_embeds.append(
self.get_model().embed_tokens(
cur_input_ids[image_token_start - 1 : image_token_start]
)
)
cur_new_input_embeds.append(cur_vision_features)
cur_new_input_embeds.append(
self.get_model().embed_tokens(
cur_input_ids[image_token_start + 1 : image_token_start + 2]
)
)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(
torch.full(
(cur_vision_features.shape[0],),
IGNORE_INDEX,
device=labels.device,
dtype=labels.dtype,
)
)
cur_new_labels.append(cur_labels[image_token_start : image_token_start + 1])
cur_labels = cur_labels[image_token_start + 2 :]
else:
cur_new_input_embeds.append(
self.get_model().embed_tokens(cur_input_ids[:image_token_start])
)
cur_new_input_embeds.append(cur_vision_features)
if labels is not None:
cur_new_labels.append(cur_labels[:image_token_start])
cur_new_labels.append(
torch.full(
(cur_vision_features.shape[0],),
IGNORE_INDEX,
device=labels.device,
dtype=labels.dtype,
)
)
cur_labels = cur_labels[image_token_start + 1 :]
cur_image_idx += 1
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
cur_input_ids = cur_input_ids[image_token_start + 2 :]
else:
cur_input_ids = cur_input_ids[image_token_start + 1 :]
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
if cur_input_ids.numel() > 0:
if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
self.config, "mm_use_im_start_end", False
):
cur_new_input_embeds.append(
self.get_model().embed_tokens(cur_input_ids).detach()
)
else:
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
if labels is not None:
cur_new_labels.append(cur_labels)
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
new_input_embeds.append(cur_new_input_embeds)
if labels is not None:
cur_new_labels = torch.cat(cur_new_labels, dim=0)
new_labels.append(cur_new_labels)
if PROFILE_RUNTIME:
logger.info(f"Time for loop: {time.time() - start_time_for_loop}")
start_time_paddding = time.time()
# pad all sentences in batch to the same length
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
max_len = max(x.shape[0] for x in new_input_embeds)
new_input_embeds_align = []
for cur_new_embed in new_input_embeds:
cur_new_embed = torch.cat(
(
cur_new_embed,
torch.zeros(
(max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
dtype=cur_new_embed.dtype,
device=cur_new_embed.device,
),
),
dim=0,
)
new_input_embeds_align.append(cur_new_embed)
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
if labels is not None:
new_labels_align = []
_new_labels = new_labels
for cur_new_label in new_labels:
cur_new_label = torch.cat(
(
cur_new_label,
torch.full(
(max_len - cur_new_label.shape[0],),
IGNORE_INDEX,
dtype=cur_new_label.dtype,
device=cur_new_label.device,
),
),
dim=0,
)
new_labels_align.append(cur_new_label)
new_labels = torch.stack(new_labels_align, dim=0)
if attention_mask is not None:
new_attention_mask = []
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
attention_mask, _new_labels, new_labels
):
new_attn_mask_pad_left = torch.full(
(cur_new_labels.shape[0] - labels.shape[1],),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
)
new_attn_mask_pad_right = torch.full(
(cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
False,
dtype=attention_mask.dtype,
device=attention_mask.device,
)
cur_new_attention_mask = torch.cat(
(
new_attn_mask_pad_left,
cur_attention_mask,
new_attn_mask_pad_right,
),
dim=0,
)
new_attention_mask.append(cur_new_attention_mask)
attention_mask = torch.stack(new_attention_mask, dim=0)
assert attention_mask.shape == new_labels.shape
else:
new_input_embeds = torch.stack(new_input_embeds, dim=0)
if labels is not None:
new_labels = torch.stack(new_labels, dim=0)
if attention_mask is not None:
new_attn_mask_pad_left = torch.full(
(
attention_mask.shape[0],
new_input_embeds.shape[1] - input_ids.shape[1],
),
True,
dtype=attention_mask.dtype,
device=attention_mask.device,
)
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
assert attention_mask.shape == new_input_embeds.shape[:2]
if PROFILE_RUNTIME:
logger.info(f"Time padding: {time.time() - start_time_paddding}")
return (
None,
attention_mask,
past_key_values,
new_input_embeds,
new_labels,
vision_features_before_mm_projection,
)
def initialize_vision_tokenizer(self, model_args, tokenizer):
if model_args.mm_use_im_patch_token:
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if model_args.mm_use_im_start_end:
(
num_new_tokens,
input_embeddings,
output_embeddings,
) = self.add_special_tokens_and_resize_embeddings(
special_tokens_list=[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN],
tokenizer=tokenizer,
)
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
if model_args.pretrain_mm_mlp_adapter:
mm_projector_weights = torch.load(
model_args.pretrain_mm_mlp_adapter, map_location="cpu"
)
embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
assert num_new_tokens == 2
if input_embeddings.shape == embed_tokens_weight.shape:
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
elif embed_tokens_weight.shape[0] == num_new_tokens:
input_embeddings[-num_new_tokens:] = embed_tokens_weight
else:
raise ValueError(
f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
)
elif model_args.mm_use_im_patch_token:
if model_args.tune_mm_mlp_adapter:
for p in self.get_input_embeddings().parameters():
p.requires_grad = False
for p in self.get_output_embeddings().parameters():
p.requires_grad = False
# add special tokens if bbox_tokenization_type is location_tokens
if model_args.bbox_tokenization_type == "location_tokens":
num_special_tokens = model_args.num_voxels_per_axis_for_location_tokens**3
self.add_special_tokens_and_resize_embeddings(
special_tokens_list=[f"<loc_{i}>" for i in range(num_special_tokens)],
tokenizer=tokenizer,
)
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = True
elif model_args.bbox_tokenization_type == "ground_token":
self.add_special_tokens_and_resize_embeddings(
special_tokens_list=[GROUND_TOKEN], tokenizer=tokenizer
)
for p in self.get_input_embeddings().parameters():
p.requires_grad = True
for p in self.get_output_embeddings().parameters():
p.requires_grad = True
# add special token to input id mapping
self.config.added_special_token_to_input_id = tokenizer.get_added_vocab()
def add_special_tokens_and_resize_embeddings(
self,
special_tokens_list: list[str],
tokenizer: transformers.PreTrainedTokenizer,
):
num_new_tokens = tokenizer.add_tokens(special_tokens_list, special_tokens=True)
self.resize_token_embeddings(len(tokenizer))
if num_new_tokens > 0:
input_embeddings = self.get_input_embeddings().weight.data
output_embeddings = self.get_output_embeddings().weight.data
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
input_embeddings[-num_new_tokens:] = input_embeddings_avg
output_embeddings[-num_new_tokens:] = output_embeddings_avg
return num_new_tokens, input_embeddings, output_embeddings
|