File size: 20,096 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from abc import ABC, abstractmethod

import torch
import torch.nn as nn
import transformers

from llava.model.utils import get_w

from .multimodal_encoder.builder import build_vision_tower

from llava.constants import (
    GROUND_TOKEN,
    IGNORE_INDEX,
    IMAGE_TOKEN_INDEX,
    DEFAULT_IMAGE_PATCH_TOKEN,
    DEFAULT_IM_START_TOKEN,
    DEFAULT_IM_END_TOKEN,
    PROFILE_RUNTIME,
)

import time
from transformers.utils import logging

logger = logging.get_logger("transformers")


class LlavaMetaModel:
    def __init__(self, config):
        super(LlavaMetaModel, self).__init__(config)

        if hasattr(config, "mm_vision_tower"):
            self.vision_tower = build_vision_tower(config, delay_load=True)
            if self.vision_tower is not None:
                self.mm_projector = nn.Linear(
                    self.vision_tower.hidden_size, config.hidden_size
                )  # placeholder, this will be re-initialized later in initialize_vision_modules()

    def get_vision_tower(self):
        vision_tower = getattr(self, "vision_tower", None)
        if type(vision_tower) is list:
            vision_tower = vision_tower[0]
        return vision_tower

    def initialize_vision_modules(self, model_args, fsdp=None):
        vision_tower = model_args.vision_tower
        mm_vision_select_layer = model_args.mm_vision_select_layer
        mm_vision_select_feature = model_args.mm_vision_select_feature
        pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
        pretrain_vision_tower = model_args.pretrain_vision_tower

        self.config.mm_vision_tower = vision_tower

        if hasattr(self, "vision_tower"):
            del self.vision_tower
            torch.cuda.empty_cache()
        vision_tower = build_vision_tower(model_args)

        if vision_tower is None:
            return

        if fsdp is not None and len(fsdp) > 0:
            self.vision_tower = [vision_tower]
        else:
            self.vision_tower = vision_tower

        # add these model args to HF config so that they can be saved (used for loading checkpoint)
        self.config.use_mm_proj = True
        self.config.mm_hidden_size = vision_tower.hidden_size
        self.config.mm_vision_select_layer = mm_vision_select_layer
        self.config.mm_vision_select_feature = mm_vision_select_feature

        self.config.num_points = model_args.num_points
        self.config.feature_dim = model_args.feature_dim
        self.config.num_latents = model_args.num_latents
        self.config.d_latents = model_args.d_latents
        self.config.num_cross_attention_heads = model_args.num_cross_attention_heads
        self.config.position_encoding_type = model_args.position_encoding_type

        if hasattr(self, "mm_projector"):
            del self.mm_projector
            torch.cuda.empty_cache()
        self.mm_projector = nn.Linear(self.config.mm_hidden_size, self.config.hidden_size)

        if pretrain_mm_mlp_adapter is not None:
            mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location="cpu")

            self.mm_projector.load_state_dict(get_w(mm_projector_weights, "mm_projector"))

        torch.cuda.empty_cache()


class LlavaMetaForCausalLM(ABC):
    @abstractmethod
    def get_model(self):
        pass

    def get_vision_tower(self):
        return self.get_model().get_vision_tower()

    def encode_images(self, images):
        vision_features_before_mm_projection = self.get_model().get_vision_tower()(
            images
        )  # for minkowski, the output of this step will be float32
        vision_features_before_mm_projection = vision_features_before_mm_projection.to(
            dtype=self.dtype
        )  # convert back to the dtype of the LLM (bfloat16 in most cases), no-op if the dtype is already the same
        vision_features = self.get_model().mm_projector(
            vision_features_before_mm_projection
        )  # vision_features and mm_projector are both float32

        return vision_features, vision_features_before_mm_projection

    def prepare_inputs_labels_for_multimodal(
        self, input_ids, attention_mask, past_key_values, labels, images
    ):
        vision_tower = self.get_vision_tower()
        if vision_tower is None or images is None or input_ids.shape[1] == 1:
            if (
                past_key_values is not None
                and vision_tower is not None
                and images is not None
                and input_ids.shape[1] == 1
            ):
                attention_mask = torch.ones(
                    (attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1),
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )
            vision_features_before_mm_projection = images
            return (
                input_ids,
                attention_mask,
                past_key_values,
                None,
                labels,
                vision_features_before_mm_projection,
            )

        start_time_encode_images = time.time()
        if not isinstance(images, SparseTensor) and (type(images) is list or images.ndim == 5):
            concat_images = torch.cat([image for image in images], dim=0)
            vision_features, vision_features_before_mm_projection = self.encode_images(
                concat_images
            )
            split_sizes = [image.shape[0] for image in images]
            vision_features = torch.split(vision_features, split_sizes, dim=0)
            vision_features = [x.flatten(0, 1) for x in vision_features]
        else:
            vision_features, vision_features_before_mm_projection = self.encode_images(images)
        if PROFILE_RUNTIME:
            logger.info(f"Time to encode images: {time.time() - start_time_encode_images}")

        start_time_for_loop = time.time()
        new_input_embeds = []
        new_labels = [] if labels is not None else None
        cur_image_idx = 0
        for batch_idx, cur_input_ids in enumerate(input_ids):
            if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
                # multimodal LLM, but the current sample is not multimodal
                cur_input_embeds = self.get_model().embed_tokens(cur_input_ids)
                cur_input_embeds = (
                    cur_input_embeds
                    + (0.0 * self.get_model().mm_projector(vision_tower.dummy_feature)).sum()
                )
                new_input_embeds.append(cur_input_embeds)
                if labels is not None:
                    new_labels.append(labels[batch_idx])
                cur_image_idx += 1
                continue
            image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            cur_new_input_embeds = []
            if labels is not None:
                cur_labels = labels[batch_idx]
                cur_new_labels = []
                assert cur_labels.shape == cur_input_ids.shape

            # The following while loop looks for all image tokens in the current sentence
            # and replace them with the corresponding image features.
            while image_token_indices.numel() > 0:
                cur_vision_features = vision_features[cur_image_idx]
                image_token_start = image_token_indices[0]
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_new_input_embeds.append(
                        self.get_model()
                        .embed_tokens(cur_input_ids[: image_token_start - 1])
                        .detach()
                    )
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(
                            cur_input_ids[image_token_start - 1 : image_token_start]
                        )
                    )
                    cur_new_input_embeds.append(cur_vision_features)
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(
                            cur_input_ids[image_token_start + 1 : image_token_start + 2]
                        )
                    )
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(
                            torch.full(
                                (cur_vision_features.shape[0],),
                                IGNORE_INDEX,
                                device=labels.device,
                                dtype=labels.dtype,
                            )
                        )
                        cur_new_labels.append(cur_labels[image_token_start : image_token_start + 1])
                        cur_labels = cur_labels[image_token_start + 2 :]
                else:
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(cur_input_ids[:image_token_start])
                    )
                    cur_new_input_embeds.append(cur_vision_features)
                    if labels is not None:
                        cur_new_labels.append(cur_labels[:image_token_start])
                        cur_new_labels.append(
                            torch.full(
                                (cur_vision_features.shape[0],),
                                IGNORE_INDEX,
                                device=labels.device,
                                dtype=labels.dtype,
                            )
                        )
                        cur_labels = cur_labels[image_token_start + 1 :]
                cur_image_idx += 1
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_input_ids = cur_input_ids[image_token_start + 2 :]
                else:
                    cur_input_ids = cur_input_ids[image_token_start + 1 :]
                image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
            if cur_input_ids.numel() > 0:
                if getattr(self.config, "tune_mm_mlp_adapter", False) and getattr(
                    self.config, "mm_use_im_start_end", False
                ):
                    cur_new_input_embeds.append(
                        self.get_model().embed_tokens(cur_input_ids).detach()
                    )
                else:
                    cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
                if labels is not None:
                    cur_new_labels.append(cur_labels)
            cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
            cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
            new_input_embeds.append(cur_new_input_embeds)
            if labels is not None:
                cur_new_labels = torch.cat(cur_new_labels, dim=0)
                new_labels.append(cur_new_labels)
        if PROFILE_RUNTIME:
            logger.info(f"Time for loop: {time.time() - start_time_for_loop}")

        start_time_paddding = time.time()
        # pad all sentences in batch to the same length
        if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
            max_len = max(x.shape[0] for x in new_input_embeds)

            new_input_embeds_align = []
            for cur_new_embed in new_input_embeds:
                cur_new_embed = torch.cat(
                    (
                        cur_new_embed,
                        torch.zeros(
                            (max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]),
                            dtype=cur_new_embed.dtype,
                            device=cur_new_embed.device,
                        ),
                    ),
                    dim=0,
                )
                new_input_embeds_align.append(cur_new_embed)
            new_input_embeds = torch.stack(new_input_embeds_align, dim=0)

            if labels is not None:
                new_labels_align = []
                _new_labels = new_labels
                for cur_new_label in new_labels:
                    cur_new_label = torch.cat(
                        (
                            cur_new_label,
                            torch.full(
                                (max_len - cur_new_label.shape[0],),
                                IGNORE_INDEX,
                                dtype=cur_new_label.dtype,
                                device=cur_new_label.device,
                            ),
                        ),
                        dim=0,
                    )
                    new_labels_align.append(cur_new_label)
                new_labels = torch.stack(new_labels_align, dim=0)

            if attention_mask is not None:
                new_attention_mask = []
                for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(
                    attention_mask, _new_labels, new_labels
                ):
                    new_attn_mask_pad_left = torch.full(
                        (cur_new_labels.shape[0] - labels.shape[1],),
                        True,
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )
                    new_attn_mask_pad_right = torch.full(
                        (cur_new_labels_align.shape[0] - cur_new_labels.shape[0],),
                        False,
                        dtype=attention_mask.dtype,
                        device=attention_mask.device,
                    )
                    cur_new_attention_mask = torch.cat(
                        (
                            new_attn_mask_pad_left,
                            cur_attention_mask,
                            new_attn_mask_pad_right,
                        ),
                        dim=0,
                    )
                    new_attention_mask.append(cur_new_attention_mask)
                attention_mask = torch.stack(new_attention_mask, dim=0)
                assert attention_mask.shape == new_labels.shape
        else:
            new_input_embeds = torch.stack(new_input_embeds, dim=0)
            if labels is not None:
                new_labels = torch.stack(new_labels, dim=0)

            if attention_mask is not None:
                new_attn_mask_pad_left = torch.full(
                    (
                        attention_mask.shape[0],
                        new_input_embeds.shape[1] - input_ids.shape[1],
                    ),
                    True,
                    dtype=attention_mask.dtype,
                    device=attention_mask.device,
                )
                attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
                assert attention_mask.shape == new_input_embeds.shape[:2]

        if PROFILE_RUNTIME:
            logger.info(f"Time padding: {time.time() - start_time_paddding}")
        return (
            None,
            attention_mask,
            past_key_values,
            new_input_embeds,
            new_labels,
            vision_features_before_mm_projection,
        )

    def initialize_vision_tokenizer(self, model_args, tokenizer):
        if model_args.mm_use_im_patch_token:
            tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
            self.resize_token_embeddings(len(tokenizer))

        if model_args.mm_use_im_start_end:
            (
                num_new_tokens,
                input_embeddings,
                output_embeddings,
            ) = self.add_special_tokens_and_resize_embeddings(
                special_tokens_list=[DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN],
                tokenizer=tokenizer,
            )

            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = True
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

            if model_args.pretrain_mm_mlp_adapter:
                mm_projector_weights = torch.load(
                    model_args.pretrain_mm_mlp_adapter, map_location="cpu"
                )
                embed_tokens_weight = mm_projector_weights["model.embed_tokens.weight"]
                assert num_new_tokens == 2
                if input_embeddings.shape == embed_tokens_weight.shape:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
                elif embed_tokens_weight.shape[0] == num_new_tokens:
                    input_embeddings[-num_new_tokens:] = embed_tokens_weight
                else:
                    raise ValueError(
                        f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}."
                    )
        elif model_args.mm_use_im_patch_token:
            if model_args.tune_mm_mlp_adapter:
                for p in self.get_input_embeddings().parameters():
                    p.requires_grad = False
                for p in self.get_output_embeddings().parameters():
                    p.requires_grad = False

        # add special tokens if bbox_tokenization_type is location_tokens
        if model_args.bbox_tokenization_type == "location_tokens":
            num_special_tokens = model_args.num_voxels_per_axis_for_location_tokens**3
            self.add_special_tokens_and_resize_embeddings(
                special_tokens_list=[f"<loc_{i}>" for i in range(num_special_tokens)],
                tokenizer=tokenizer,
            )
            for p in self.get_input_embeddings().parameters():
                p.requires_grad = True
            for p in self.get_output_embeddings().parameters():
                p.requires_grad = True
        elif model_args.bbox_tokenization_type == "ground_token":
            self.add_special_tokens_and_resize_embeddings(
                special_tokens_list=[GROUND_TOKEN], tokenizer=tokenizer
            )
            for p in self.get_input_embeddings().parameters():
                p.requires_grad = True
            for p in self.get_output_embeddings().parameters():
                p.requires_grad = True

        # add special token to input id mapping
        self.config.added_special_token_to_input_id = tokenizer.get_added_vocab()

    def add_special_tokens_and_resize_embeddings(
        self,
        special_tokens_list: list[str],
        tokenizer: transformers.PreTrainedTokenizer,
    ):
        num_new_tokens = tokenizer.add_tokens(special_tokens_list, special_tokens=True)
        self.resize_token_embeddings(len(tokenizer))

        if num_new_tokens > 0:
            input_embeddings = self.get_input_embeddings().weight.data
            output_embeddings = self.get_output_embeddings().weight.data

            input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)
            output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(dim=0, keepdim=True)

            input_embeddings[-num_new_tokens:] = input_embeddings_avg
            output_embeddings[-num_new_tokens:] = output_embeddings_avg

        return num_new_tokens, input_embeddings, output_embeddings