File size: 17,347 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
#    Copyright 2023 Haotian Liu
#
#    Licensed under the Apache License, Version 2.0 (the "License");
#    you may not use this file except in compliance with the License.
#    You may obtain a copy of the License at
#
#        http://www.apache.org/licenses/LICENSE-2.0
#
#    Unless required by applicable law or agreed to in writing, software
#    distributed under the License is distributed on an "AS IS" BASIS,
#    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#    See the License for the specific language governing permissions and
#    limitations under the License.


from dataclasses import dataclass
from typing import List, Optional, Tuple, Union

import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import time

from transformers import (
    AutoConfig,
    AutoModelForCausalLM,
    LlamaConfig,
    LlamaModel,
    LlamaForCausalLM,
)

from transformers.modeling_outputs import CausalLMOutputWithPast

from llava.constants import GROUND_TOKEN, PROFILE_RUNTIME
from llava.model.iou_3d_loss import distance_box_iou_loss_3d
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM



from transformers.utils import logging

logger = logging.get_logger("transformers")


class LlavaConfig(LlamaConfig):
    model_type = "llava"

    def __init__(self, **kwargs):
        self.lm_loss_weight = kwargs.pop("lm_loss_weight", 1.0)
        self.use_bbox_iou_loss = kwargs.pop("use_bbox_iou_loss", None)
        self.bbox_iou_loss_weight = kwargs.pop("bbox_iou_loss_weight", None)
        self.use_bbox_mse_loss = kwargs.pop("use_bbox_mse_loss", None)
        self.bbox_mse_loss_weight = kwargs.pop("bbox_mse_loss_weight", None)
        self.use_bbox_ce_loss = kwargs.pop("use_bbox_ce_loss", None)
        self.bbox_ce_loss_weight = kwargs.pop("bbox_ce_loss_weight", None)
        self.num_latents = kwargs.pop("num_latents", None)
        self.d_latents = kwargs.pop("d_latents", None)
        self.vision_tower = kwargs.pop("vision_tower", None)
        super().__init__(**kwargs)


class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
    config_class = LlavaConfig

    def __init__(self, config: LlamaConfig):
        super(LlavaLlamaModel, self).__init__(config)


@dataclass
class CausalLMOutputWithPastWithBbox(CausalLMOutputWithPast):
    total_loss: Optional[torch.FloatTensor] = None
    lm_loss: Optional[torch.FloatTensor] = None
    bbox_iou_loss: Optional[torch.FloatTensor] = None
    bbox_mse_loss: Optional[torch.FloatTensor] = None
    bbox_ce_loss: Optional[torch.FloatTensor] = None
    bbox_iou: Optional[torch.FloatTensor] = None

    @classmethod
    def ignore_keys_for_eval(cls):
        # only keep the losses values for validation during training
        # keys left: 0: "total_loss", 1: "lm_loss", 2: "bbox_iou_loss", 3: "bbox_mse_loss", 4: "bbox_iou"
        return [
            "logits",
            "past_key_values",
            "hidden_states",
            "attentions",
        ]


class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
    config_class = LlavaConfig

    def __init__(self, config, **kwargs):
        super(LlamaForCausalLM, self).__init__(config)
        self.model = LlavaLlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        # a MLP bbox regression head
        if (
            self.config.use_bbox_iou_loss
            or self.config.use_bbox_mse_loss
            or self.config.use_bbox_ce_loss
        ):
            if self.config.vision_tower == "bbox-ground-truth":
                self.bbox_head = BBoxHeadForGroundTruthBboxSelectionMLPFusionBoxCoordsAndClassID(
                    lm_feat_dim_in=config.hidden_size,
                    vision_feat_dim_in=config.d_latents,
                    num_vision_feat=config.num_latents,
                )
            else:
                # self.bbox_head = BBoxHead(lm_feat_dim_in=config.hidden_size, vision_feat_dim_in=d_latents)
                self.bbox_head = SimpleBBoxHead(
                    lm_feat_dim_in=config.hidden_size,
                    vision_feat_dim_in=config.d_latents,
                    num_vision_feat=config.num_latents,
                )

        # Initialize weights and apply final processing
        self.post_init()

    def get_model(self):
        return self.model

    def forward(
        self,
        input_ids: torch.LongTensor = None,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[List[torch.FloatTensor]] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        images: Optional[torch.FloatTensor] = None,
        return_dict: Optional[bool] = None,
        coords_minknet: Optional[torch.Tensor] = None,
        feats_minknet: Optional[torch.Tensor] = None,
        inds_reconstruct_minknet: Optional[torch.LongTensor] = None,
        bbox_labels: Optional[torch.FloatTensor] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        """
        forward function

        Args:
            input_ids (torch.LongTensor, optional): Tensor of token indices to be processed by the model.
            attention_mask (Optional[torch.Tensor], optional): Mask to avoid performing attention on padding token indices.
            past_key_values (Optional[List[torch.FloatTensor]], optional): List of tensors containing past key values for attention layers.
            inputs_embeds (Optional[torch.FloatTensor], optional): Inputs embeddings for model processing.
            labels (Optional[torch.LongTensor], optional): Labels for supervised training.
            use_cache (Optional[bool], optional): Whether to use caching for faster generation of sequences.
            output_attentions (Optional[bool], optional): Whether to return attentions weights.
            output_hidden_states (Optional[bool], optional): Whether to return hidden states of the model.
            images (Optional[torch.FloatTensor], optional): Tensor for image inputs if the model is configured for vision tasks.
            return_dict (Optional[bool], optional): Whether to return a `ModelOutput` instead of a plain tuple.
            coords_minknet (Optional[torch.Tensor], optional): Coordinates tensor for Minkowski network, detailing spatial structure. (N, 4)
            feats_minknet (Optional[torch.Tensor], optional): Features tensor for Minkowski network, specifying attributes at each coordinate. (N, 3)
            inds_reconstruct_minknet (Optional[torch.LongTensor], optional): Index tensor to map Minkowski network outputs back to original point cloud. (N_origin,)
            bbox_labels (Optional[torch.FloatTensor], optional): Bounding box labels for supervised training.

        Returns:
            Union[Tuple, CausalLMOutputWithPast]
        """
        ########################################
        # profile the time cost of each forward pass
        start_time_foward = time.time()

        # data preprocessing for MinkowskiEngine
        if images is None and coords_minknet is not None:
            # this is the input to the model for MinkowskiEngine,
            # we need to convert it to SparseTensor and put it into `images`
            sparse_tensor_minknet_input = SparseTensor(
                features=feats_minknet.to(dtype=torch.float32).squeeze(),
                coordinates=coords_minknet.squeeze(),
            )  # MinkowskiEngine only supports float32, so we need to convert the input to float32, note that .to() is also differentiable
            images = sparse_tensor_minknet_input
        ########################################
        output_attentions = (
            output_attentions if output_attentions is not None else self.config.output_attentions
        )
        output_hidden_states = (
            output_hidden_states
            if output_hidden_states is not None
            else self.config.output_hidden_states
        )
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        start_time_prepare_inputs_labels_for_multimodal = time.time()
        (
            input_ids,
            attention_mask,
            past_key_values,
            inputs_embeds,
            labels,
            vision_features_before_mm_projection,  # (B, num_latents, d_latents)
        ) = self.prepare_inputs_labels_for_multimodal(
            input_ids, attention_mask, past_key_values, labels, images
        )
        if PROFILE_RUNTIME:
            logger.info(
                f"prepare_inputs_labels_for_multimodal time: {time.time() - start_time_prepare_inputs_labels_for_multimodal}"
            )

        start_time_llm_forward = time.time()
        # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
        lm_outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        if PROFILE_RUNTIME:
            logger.info(f"llm_forward time: {time.time() - start_time_llm_forward}")

        hidden_states = lm_outputs[0]
        logits = self.lm_head(hidden_states)  # (B, L, V)

        # compute bbox loss
        start_time_bbox_loss = time.time()
        if (
            self.config.use_bbox_iou_loss
            or self.config.use_bbox_mse_loss
            or self.config.use_bbox_ce_loss
        ):
            assert labels is not None and bbox_labels is not None
            shifted_hidden_states = hidden_states[
                ..., :-1, :
            ]  # (B, L-1, D), -1 to remove the last token
            shifted_labels = labels[..., 1:]  # (B, L-1), -1 to remove the first token
            grd_token_pos = shifted_labels.eq(
                self.config.added_special_token_to_input_id[GROUND_TOKEN]
            )  # (B, L-1) # ground token positions
            # Get the hidden states of the ground tokens
            grd_token_hidden_states_list = (
                []
            )  # each element contain the hidden states of the ground tokens in one sample
            for i in range(shifted_hidden_states.size(0)):  # iterate over the batch dimension
                grd_token_hidden_states_list.append(shifted_hidden_states[i, grd_token_pos[i]])

            assert sum([e.shape[0] for e in grd_token_hidden_states_list]) == bbox_labels.shape[0]

            bbox_scores = self.bbox_head(
                grd_token_hidden_states_list,
                vision_features_before_mm_projection,
            )  # (N, num_boxes)

            # calculate CE loss for bbox
            # first get which box is the ground truth box
            bbox_idx = 0
            gt_bbox_idx_list = []
            bbox_pred_list = []
            for i, hidden_states_in_one_sample in enumerate(
                grd_token_hidden_states_list
            ):  # iterate over the batch dimension
                for j in range(hidden_states_in_one_sample.shape[0]):
                    min_diff, min_idx = torch.min(
                        (images[i, :, 0:6] - bbox_labels[bbox_idx]).norm(dim=-1), dim=0
                    )
                    gt_bbox_idx_list.append(min_idx)
                    assert (
                        min_diff < 1e-1
                    ), f"min_diff: {min_diff}, min_idx: {min_idx}, bbox_labels[bbox_idx]: {bbox_labels[bbox_idx]}, images[i, :, 0:6]: {images[i, :, 0:6]}"
                    # get the bbox prediction
                    bbox_pred_idx = bbox_scores[bbox_idx].argmax()  # (1,)
                    bbox_pred = images[i, bbox_pred_idx][0:6]  # (6,)
                    bbox_pred_list.append(bbox_pred)
                    bbox_idx += 1

            gt_bbox_idx = torch.stack(gt_bbox_idx_list)  # (N,)
            bbox_preds = torch.stack(bbox_pred_list)  # (N, 6)

            # then calculate CE loss
            bbox_ce_loss_fct = nn.CrossEntropyLoss()
            bbox_ce_loss = bbox_ce_loss_fct(bbox_scores, gt_bbox_idx)

            bbox_iou_loss_fct = distance_box_iou_loss_3d
            bbox_mse_loss_fct = nn.MSELoss()
            assert bbox_preds.shape[0] == bbox_labels.shape[0]
            _, bbox_iou = bbox_iou_loss_fct(bbox_preds, bbox_labels, return_iou=True)
            bbox_iou_loss = 1 - bbox_iou  # range: [0, 1]
            bbox_mse_loss = bbox_mse_loss_fct(bbox_preds, bbox_labels)

            # log one bbox prediction for debugging
            logger.info(f"DEBUG: bbox_labels[0]: {bbox_labels[0]}")
            logger.info(f"DEBUG: bbox_preds[0]: {bbox_preds[0]}")
            logger.info(f"DEBUG: bbox_iou for batch: {bbox_iou}")
        else:
            bbox_iou_loss = None
            bbox_iou = None
            bbox_mse_loss = None
            bbox_ce_loss = None
        if PROFILE_RUNTIME:
            logger.info(f"bbox_loss time: {time.time() - start_time_bbox_loss}")

        # compute language modeling loss
        total_loss = None
        lm_loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            lm_loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model/pipeline parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            lm_loss = lm_loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + lm_outputs[1:]
            return (lm_loss,) + output if lm_loss is not None else output

        if lm_loss is not None:
            total_loss = lm_loss * self.config.lm_loss_weight
        if bbox_iou_loss is not None:
            total_loss = total_loss + bbox_iou_loss * self.config.bbox_iou_loss_weight
        if bbox_mse_loss is not None:
            total_loss = total_loss + bbox_mse_loss * self.config.bbox_mse_loss_weight
        if bbox_ce_loss is not None:
            total_loss = total_loss + bbox_ce_loss * self.config.bbox_ce_loss_weight

        if PROFILE_RUNTIME:
            logger.info(f"foward time: {time.time() - start_time_foward}")

        return CausalLMOutputWithPastWithBbox(
            total_loss=total_loss,
            lm_loss=lm_loss,
            bbox_iou_loss=bbox_iou_loss,
            bbox_mse_loss=bbox_mse_loss,
            bbox_ce_loss=bbox_ce_loss,
            bbox_iou=bbox_iou,
            logits=logits,
            past_key_values=lm_outputs.past_key_values,
            hidden_states=lm_outputs.hidden_states,
            attentions=lm_outputs.attentions,
        )

    def predict_bboxes(
        self,
        input_ids: torch.LongTensor,
        lm_hidden_states: torch.FloatTensor,
    ) -> dict[str, torch.Tensor]:
        """
        predict bounding boxes

        Args:
            input_ids (torch.LongTensor): tokenized input, shape (B, L)
            lm_hidden_states (torch.FloatTensor): hidden states from the language model, shape (B, L, D)

        Returns:
            dict[str, torch.Tensor]: dictionary of tensors:
                1. predicted bounding boxes
                2. number of ground phrases
        """
        grd_token_pos = input_ids.eq(
            self.self.config.added_special_token_to_input_id[GROUND_TOKEN]
        )  # (B, L)
        num_grd_phrases = grd_token_pos.sum(dim=1).long()  # (B,)
        grd_token_hs = lm_hidden_states[grd_token_pos]  # (N, D), N is the number of ground tokens

        # compute the bbox predictions
        bbox_preds = self.bbox_head(grd_token_hs)  # (N, 6)

        ret = {
            "bbox_preds": bbox_preds,
            "num_grd_phrases": num_grd_phrases,
        }
        return ret

    def prepare_inputs_for_generation(
        self,
        input_ids,
        past_key_values=None,
        attention_mask=None,
        inputs_embeds=None,
        **kwargs,
    ):
        if past_key_values:
            input_ids = input_ids[:, -1:]

        # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
        if inputs_embeds is not None and past_key_values is None:
            model_inputs = {"inputs_embeds": inputs_embeds}
        else:
            model_inputs = {"input_ids": input_ids}

        model_inputs.update(
            {
                "past_key_values": past_key_values,
                "use_cache": kwargs.get("use_cache"),
                "attention_mask": attention_mask,
                "images": kwargs.get("images", None),
                "coords_minknet": kwargs.get("coords_minknet", None),
                "feats_minknet": kwargs.get("feats_minknet", None),
                "inds_reconstruct_minknet": kwargs.get("inds_reconstruct_minknet", None),
            }
        )
        return model_inputs


AutoConfig.register("llava", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)