Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,347 Bytes
947767a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 |
# Copyright 2023 Haotian Liu
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from dataclasses import dataclass
from typing import List, Optional, Tuple, Union
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
import time
from transformers import (
AutoConfig,
AutoModelForCausalLM,
LlamaConfig,
LlamaModel,
LlamaForCausalLM,
)
from transformers.modeling_outputs import CausalLMOutputWithPast
from llava.constants import GROUND_TOKEN, PROFILE_RUNTIME
from llava.model.iou_3d_loss import distance_box_iou_loss_3d
from ..llava_arch import LlavaMetaModel, LlavaMetaForCausalLM
from transformers.utils import logging
logger = logging.get_logger("transformers")
class LlavaConfig(LlamaConfig):
model_type = "llava"
def __init__(self, **kwargs):
self.lm_loss_weight = kwargs.pop("lm_loss_weight", 1.0)
self.use_bbox_iou_loss = kwargs.pop("use_bbox_iou_loss", None)
self.bbox_iou_loss_weight = kwargs.pop("bbox_iou_loss_weight", None)
self.use_bbox_mse_loss = kwargs.pop("use_bbox_mse_loss", None)
self.bbox_mse_loss_weight = kwargs.pop("bbox_mse_loss_weight", None)
self.use_bbox_ce_loss = kwargs.pop("use_bbox_ce_loss", None)
self.bbox_ce_loss_weight = kwargs.pop("bbox_ce_loss_weight", None)
self.num_latents = kwargs.pop("num_latents", None)
self.d_latents = kwargs.pop("d_latents", None)
self.vision_tower = kwargs.pop("vision_tower", None)
super().__init__(**kwargs)
class LlavaLlamaModel(LlavaMetaModel, LlamaModel):
config_class = LlavaConfig
def __init__(self, config: LlamaConfig):
super(LlavaLlamaModel, self).__init__(config)
@dataclass
class CausalLMOutputWithPastWithBbox(CausalLMOutputWithPast):
total_loss: Optional[torch.FloatTensor] = None
lm_loss: Optional[torch.FloatTensor] = None
bbox_iou_loss: Optional[torch.FloatTensor] = None
bbox_mse_loss: Optional[torch.FloatTensor] = None
bbox_ce_loss: Optional[torch.FloatTensor] = None
bbox_iou: Optional[torch.FloatTensor] = None
@classmethod
def ignore_keys_for_eval(cls):
# only keep the losses values for validation during training
# keys left: 0: "total_loss", 1: "lm_loss", 2: "bbox_iou_loss", 3: "bbox_mse_loss", 4: "bbox_iou"
return [
"logits",
"past_key_values",
"hidden_states",
"attentions",
]
class LlavaLlamaForCausalLM(LlamaForCausalLM, LlavaMetaForCausalLM):
config_class = LlavaConfig
def __init__(self, config, **kwargs):
super(LlamaForCausalLM, self).__init__(config)
self.model = LlavaLlamaModel(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# a MLP bbox regression head
if (
self.config.use_bbox_iou_loss
or self.config.use_bbox_mse_loss
or self.config.use_bbox_ce_loss
):
if self.config.vision_tower == "bbox-ground-truth":
self.bbox_head = BBoxHeadForGroundTruthBboxSelectionMLPFusionBoxCoordsAndClassID(
lm_feat_dim_in=config.hidden_size,
vision_feat_dim_in=config.d_latents,
num_vision_feat=config.num_latents,
)
else:
# self.bbox_head = BBoxHead(lm_feat_dim_in=config.hidden_size, vision_feat_dim_in=d_latents)
self.bbox_head = SimpleBBoxHead(
lm_feat_dim_in=config.hidden_size,
vision_feat_dim_in=config.d_latents,
num_vision_feat=config.num_latents,
)
# Initialize weights and apply final processing
self.post_init()
def get_model(self):
return self.model
def forward(
self,
input_ids: torch.LongTensor = None,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[List[torch.FloatTensor]] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
images: Optional[torch.FloatTensor] = None,
return_dict: Optional[bool] = None,
coords_minknet: Optional[torch.Tensor] = None,
feats_minknet: Optional[torch.Tensor] = None,
inds_reconstruct_minknet: Optional[torch.LongTensor] = None,
bbox_labels: Optional[torch.FloatTensor] = None,
) -> Union[Tuple, CausalLMOutputWithPast]:
"""
forward function
Args:
input_ids (torch.LongTensor, optional): Tensor of token indices to be processed by the model.
attention_mask (Optional[torch.Tensor], optional): Mask to avoid performing attention on padding token indices.
past_key_values (Optional[List[torch.FloatTensor]], optional): List of tensors containing past key values for attention layers.
inputs_embeds (Optional[torch.FloatTensor], optional): Inputs embeddings for model processing.
labels (Optional[torch.LongTensor], optional): Labels for supervised training.
use_cache (Optional[bool], optional): Whether to use caching for faster generation of sequences.
output_attentions (Optional[bool], optional): Whether to return attentions weights.
output_hidden_states (Optional[bool], optional): Whether to return hidden states of the model.
images (Optional[torch.FloatTensor], optional): Tensor for image inputs if the model is configured for vision tasks.
return_dict (Optional[bool], optional): Whether to return a `ModelOutput` instead of a plain tuple.
coords_minknet (Optional[torch.Tensor], optional): Coordinates tensor for Minkowski network, detailing spatial structure. (N, 4)
feats_minknet (Optional[torch.Tensor], optional): Features tensor for Minkowski network, specifying attributes at each coordinate. (N, 3)
inds_reconstruct_minknet (Optional[torch.LongTensor], optional): Index tensor to map Minkowski network outputs back to original point cloud. (N_origin,)
bbox_labels (Optional[torch.FloatTensor], optional): Bounding box labels for supervised training.
Returns:
Union[Tuple, CausalLMOutputWithPast]
"""
########################################
# profile the time cost of each forward pass
start_time_foward = time.time()
# data preprocessing for MinkowskiEngine
if images is None and coords_minknet is not None:
# this is the input to the model for MinkowskiEngine,
# we need to convert it to SparseTensor and put it into `images`
sparse_tensor_minknet_input = SparseTensor(
features=feats_minknet.to(dtype=torch.float32).squeeze(),
coordinates=coords_minknet.squeeze(),
) # MinkowskiEngine only supports float32, so we need to convert the input to float32, note that .to() is also differentiable
images = sparse_tensor_minknet_input
########################################
output_attentions = (
output_attentions if output_attentions is not None else self.config.output_attentions
)
output_hidden_states = (
output_hidden_states
if output_hidden_states is not None
else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
start_time_prepare_inputs_labels_for_multimodal = time.time()
(
input_ids,
attention_mask,
past_key_values,
inputs_embeds,
labels,
vision_features_before_mm_projection, # (B, num_latents, d_latents)
) = self.prepare_inputs_labels_for_multimodal(
input_ids, attention_mask, past_key_values, labels, images
)
if PROFILE_RUNTIME:
logger.info(
f"prepare_inputs_labels_for_multimodal time: {time.time() - start_time_prepare_inputs_labels_for_multimodal}"
)
start_time_llm_forward = time.time()
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
lm_outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if PROFILE_RUNTIME:
logger.info(f"llm_forward time: {time.time() - start_time_llm_forward}")
hidden_states = lm_outputs[0]
logits = self.lm_head(hidden_states) # (B, L, V)
# compute bbox loss
start_time_bbox_loss = time.time()
if (
self.config.use_bbox_iou_loss
or self.config.use_bbox_mse_loss
or self.config.use_bbox_ce_loss
):
assert labels is not None and bbox_labels is not None
shifted_hidden_states = hidden_states[
..., :-1, :
] # (B, L-1, D), -1 to remove the last token
shifted_labels = labels[..., 1:] # (B, L-1), -1 to remove the first token
grd_token_pos = shifted_labels.eq(
self.config.added_special_token_to_input_id[GROUND_TOKEN]
) # (B, L-1) # ground token positions
# Get the hidden states of the ground tokens
grd_token_hidden_states_list = (
[]
) # each element contain the hidden states of the ground tokens in one sample
for i in range(shifted_hidden_states.size(0)): # iterate over the batch dimension
grd_token_hidden_states_list.append(shifted_hidden_states[i, grd_token_pos[i]])
assert sum([e.shape[0] for e in grd_token_hidden_states_list]) == bbox_labels.shape[0]
bbox_scores = self.bbox_head(
grd_token_hidden_states_list,
vision_features_before_mm_projection,
) # (N, num_boxes)
# calculate CE loss for bbox
# first get which box is the ground truth box
bbox_idx = 0
gt_bbox_idx_list = []
bbox_pred_list = []
for i, hidden_states_in_one_sample in enumerate(
grd_token_hidden_states_list
): # iterate over the batch dimension
for j in range(hidden_states_in_one_sample.shape[0]):
min_diff, min_idx = torch.min(
(images[i, :, 0:6] - bbox_labels[bbox_idx]).norm(dim=-1), dim=0
)
gt_bbox_idx_list.append(min_idx)
assert (
min_diff < 1e-1
), f"min_diff: {min_diff}, min_idx: {min_idx}, bbox_labels[bbox_idx]: {bbox_labels[bbox_idx]}, images[i, :, 0:6]: {images[i, :, 0:6]}"
# get the bbox prediction
bbox_pred_idx = bbox_scores[bbox_idx].argmax() # (1,)
bbox_pred = images[i, bbox_pred_idx][0:6] # (6,)
bbox_pred_list.append(bbox_pred)
bbox_idx += 1
gt_bbox_idx = torch.stack(gt_bbox_idx_list) # (N,)
bbox_preds = torch.stack(bbox_pred_list) # (N, 6)
# then calculate CE loss
bbox_ce_loss_fct = nn.CrossEntropyLoss()
bbox_ce_loss = bbox_ce_loss_fct(bbox_scores, gt_bbox_idx)
bbox_iou_loss_fct = distance_box_iou_loss_3d
bbox_mse_loss_fct = nn.MSELoss()
assert bbox_preds.shape[0] == bbox_labels.shape[0]
_, bbox_iou = bbox_iou_loss_fct(bbox_preds, bbox_labels, return_iou=True)
bbox_iou_loss = 1 - bbox_iou # range: [0, 1]
bbox_mse_loss = bbox_mse_loss_fct(bbox_preds, bbox_labels)
# log one bbox prediction for debugging
logger.info(f"DEBUG: bbox_labels[0]: {bbox_labels[0]}")
logger.info(f"DEBUG: bbox_preds[0]: {bbox_preds[0]}")
logger.info(f"DEBUG: bbox_iou for batch: {bbox_iou}")
else:
bbox_iou_loss = None
bbox_iou = None
bbox_mse_loss = None
bbox_ce_loss = None
if PROFILE_RUNTIME:
logger.info(f"bbox_loss time: {time.time() - start_time_bbox_loss}")
# compute language modeling loss
total_loss = None
lm_loss = None
if labels is not None:
# Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
lm_loss_fct = CrossEntropyLoss()
shift_logits = shift_logits.view(-1, self.config.vocab_size)
shift_labels = shift_labels.view(-1)
# Enable model/pipeline parallelism
shift_labels = shift_labels.to(shift_logits.device)
lm_loss = lm_loss_fct(shift_logits, shift_labels)
if not return_dict:
output = (logits,) + lm_outputs[1:]
return (lm_loss,) + output if lm_loss is not None else output
if lm_loss is not None:
total_loss = lm_loss * self.config.lm_loss_weight
if bbox_iou_loss is not None:
total_loss = total_loss + bbox_iou_loss * self.config.bbox_iou_loss_weight
if bbox_mse_loss is not None:
total_loss = total_loss + bbox_mse_loss * self.config.bbox_mse_loss_weight
if bbox_ce_loss is not None:
total_loss = total_loss + bbox_ce_loss * self.config.bbox_ce_loss_weight
if PROFILE_RUNTIME:
logger.info(f"foward time: {time.time() - start_time_foward}")
return CausalLMOutputWithPastWithBbox(
total_loss=total_loss,
lm_loss=lm_loss,
bbox_iou_loss=bbox_iou_loss,
bbox_mse_loss=bbox_mse_loss,
bbox_ce_loss=bbox_ce_loss,
bbox_iou=bbox_iou,
logits=logits,
past_key_values=lm_outputs.past_key_values,
hidden_states=lm_outputs.hidden_states,
attentions=lm_outputs.attentions,
)
def predict_bboxes(
self,
input_ids: torch.LongTensor,
lm_hidden_states: torch.FloatTensor,
) -> dict[str, torch.Tensor]:
"""
predict bounding boxes
Args:
input_ids (torch.LongTensor): tokenized input, shape (B, L)
lm_hidden_states (torch.FloatTensor): hidden states from the language model, shape (B, L, D)
Returns:
dict[str, torch.Tensor]: dictionary of tensors:
1. predicted bounding boxes
2. number of ground phrases
"""
grd_token_pos = input_ids.eq(
self.self.config.added_special_token_to_input_id[GROUND_TOKEN]
) # (B, L)
num_grd_phrases = grd_token_pos.sum(dim=1).long() # (B,)
grd_token_hs = lm_hidden_states[grd_token_pos] # (N, D), N is the number of ground tokens
# compute the bbox predictions
bbox_preds = self.bbox_head(grd_token_hs) # (N, 6)
ret = {
"bbox_preds": bbox_preds,
"num_grd_phrases": num_grd_phrases,
}
return ret
def prepare_inputs_for_generation(
self,
input_ids,
past_key_values=None,
attention_mask=None,
inputs_embeds=None,
**kwargs,
):
if past_key_values:
input_ids = input_ids[:, -1:]
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
if inputs_embeds is not None and past_key_values is None:
model_inputs = {"inputs_embeds": inputs_embeds}
else:
model_inputs = {"input_ids": input_ids}
model_inputs.update(
{
"past_key_values": past_key_values,
"use_cache": kwargs.get("use_cache"),
"attention_mask": attention_mask,
"images": kwargs.get("images", None),
"coords_minknet": kwargs.get("coords_minknet", None),
"feats_minknet": kwargs.get("feats_minknet", None),
"inds_reconstruct_minknet": kwargs.get("inds_reconstruct_minknet", None),
}
)
return model_inputs
AutoConfig.register("llava", LlavaConfig)
AutoModelForCausalLM.register(LlavaConfig, LlavaLlamaForCausalLM)
|