Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,600 Bytes
947767a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
from PIL import Image
from io import BytesIO
import base64
import torch
from transformers import StoppingCriteria
from llava.constants import IMAGE_TOKEN_INDEX
import numpy as np
from llava.model.data_3d_util import (
compute_max_extent_and_centroid,
unit_cube_normalization_in_place,
)
def prepare_3d_input_minkowski(pcd_file: str, input_color: bool, voxelizer):
pcd_data_np = np.load(pcd_file) # (num_points, 6)
locs_in = pcd_data_np[:, 3:]
rgb = np.rint(pcd_data_np[:, :3] * 255).astype(int)
# common trick to change the range of [-1, 1]
feats_in = rgb / 127.5 - 1
# keep this operation if we have other data format
feats_in = (feats_in + 1.0) * 127.5
labels_in = torch.ones(locs_in.shape[0]).int()
locs, feats, labels, inds_reconstruct = voxelizer.voxelize(locs_in, feats_in, labels_in)
coords = torch.from_numpy(locs).int()
coords = torch.cat((torch.zeros(coords.shape[0], 1, dtype=torch.int), coords), dim=1)
if input_color:
feats = torch.from_numpy(feats).float() / 127.5 - 1.0
else:
feats = torch.ones(coords.shape[0], 3)
return coords, feats, inds_reconstruct
def prepare_3d_input(
pcd_file: str,
max_num_points: int,
is_normalize_points_to_unit_cube: bool,
mm_vision_tower: str,
) -> torch.Tensor:
# TODO: add support for MinkNet
if mm_vision_tower == "pointcloud-perceiver":
pcd_data = np.load(pcd_file) # (num_points, 768)
# note that the convention of the last 3 dimension of any npy flle is x, y, z
pcd_data_xyz = pcd_data[:, -3:]
max_extent, centroid = compute_max_extent_and_centroid(pcd_data_xyz, epsilon=1e-4)
if is_normalize_points_to_unit_cube:
unit_cube_normalization_in_place(pcd_data_xyz, max_extent, centroid)
pcd_data = torch.from_numpy(pcd_data).float()
pcd_attention_mask = torch.ones(pcd_data.shape[0], dtype=pcd_data.dtype)
# truncate or pad to NUM_POINTS datapoints along dim 0
if pcd_data.shape[0] > max_num_points:
pcd_data = pcd_data[:max_num_points, :]
pcd_attention_mask = pcd_attention_mask[:max_num_points]
elif pcd_data.shape[0] < max_num_points:
padding = torch.zeros(
(
max_num_points - pcd_data.shape[0],
pcd_data.shape[1],
)
)
pcd_data = torch.cat((pcd_data, padding), dim=0)
# extend the attention mask with zeros for the padding points
attention_mask_padding = torch.zeros(padding.shape[0], dtype=torch.bool)
pcd_attention_mask = torch.cat((pcd_attention_mask, attention_mask_padding))
# output shape: (num_points, 768 + 1) where the last dimension is the attention mask
output_tensor = torch.cat((pcd_data, pcd_attention_mask.unsqueeze(1)), dim=1)
return output_tensor.unsqueeze(0) # add batch dimension
def load_image_from_base64(image):
return Image.open(BytesIO(base64.b64decode(image)))
def process_images(images, image_processor, model_cfg):
return image_processor(images, return_tensors="pt")["pixel_values"]
def tokenizer_image_token(
prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]
def insert_separator(X, sep):
return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]
input_ids = []
offset = 0
if (
len(prompt_chunks) > 0
and len(prompt_chunks[0]) > 0
and prompt_chunks[0][0] == tokenizer.bos_token_id
):
offset = 1
input_ids.append(prompt_chunks[0][0])
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
input_ids.extend(x[offset:])
if return_tensors is not None:
if return_tensors == "pt":
return torch.tensor(input_ids, dtype=torch.long)
raise ValueError(f"Unsupported tensor type: {return_tensors}")
return input_ids
def get_model_name_from_path(model_path):
model_path = model_path.strip("/")
model_paths = model_path.split("/")
if model_paths[-1].startswith("checkpoint-"):
return model_paths[-2] + "_" + model_paths[-1]
else:
return model_paths[-1]
class KeywordsStoppingCriteria(StoppingCriteria):
def __init__(self, keywords, tokenizer, input_ids):
self.keywords = keywords
self.keyword_ids = []
for keyword in keywords:
cur_keyword_ids = tokenizer(keyword).input_ids
if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
cur_keyword_ids = cur_keyword_ids[1:]
self.keyword_ids.append(torch.tensor(cur_keyword_ids))
self.tokenizer = tokenizer
self.start_len = input_ids.shape[1]
def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO
offset = min(output_ids.shape[1] - self.start_len, 3)
self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
for keyword_id in self.keyword_ids:
if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
return True
outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
for keyword in self.keywords:
if keyword in outputs:
return True
return False
|