File size: 5,600 Bytes
947767a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
from PIL import Image
from io import BytesIO
import base64

import torch
from transformers import StoppingCriteria
from llava.constants import IMAGE_TOKEN_INDEX
import numpy as np

from llava.model.data_3d_util import (
    compute_max_extent_and_centroid,
    unit_cube_normalization_in_place,
)


def prepare_3d_input_minkowski(pcd_file: str, input_color: bool, voxelizer):
    pcd_data_np = np.load(pcd_file)  # (num_points, 6)
    locs_in = pcd_data_np[:, 3:]
    rgb = np.rint(pcd_data_np[:, :3] * 255).astype(int)
    # common trick to change the range of [-1, 1]
    feats_in = rgb / 127.5 - 1
    # keep this operation if we have other data format
    feats_in = (feats_in + 1.0) * 127.5
    labels_in = torch.ones(locs_in.shape[0]).int()

    locs, feats, labels, inds_reconstruct = voxelizer.voxelize(locs_in, feats_in, labels_in)
    coords = torch.from_numpy(locs).int()
    coords = torch.cat((torch.zeros(coords.shape[0], 1, dtype=torch.int), coords), dim=1)

    if input_color:
        feats = torch.from_numpy(feats).float() / 127.5 - 1.0
    else:
        feats = torch.ones(coords.shape[0], 3)

    return coords, feats, inds_reconstruct


def prepare_3d_input(
    pcd_file: str,
    max_num_points: int,
    is_normalize_points_to_unit_cube: bool,
    mm_vision_tower: str,
) -> torch.Tensor:
    # TODO: add support for MinkNet
    if mm_vision_tower == "pointcloud-perceiver":
        pcd_data = np.load(pcd_file)  # (num_points, 768)
        # note that the convention of the last 3 dimension of any npy flle is x, y, z
        pcd_data_xyz = pcd_data[:, -3:]
        max_extent, centroid = compute_max_extent_and_centroid(pcd_data_xyz, epsilon=1e-4)
        if is_normalize_points_to_unit_cube:
            unit_cube_normalization_in_place(pcd_data_xyz, max_extent, centroid)
        pcd_data = torch.from_numpy(pcd_data).float()
        pcd_attention_mask = torch.ones(pcd_data.shape[0], dtype=pcd_data.dtype)

        # truncate or pad to NUM_POINTS datapoints along dim 0
        if pcd_data.shape[0] > max_num_points:
            pcd_data = pcd_data[:max_num_points, :]
            pcd_attention_mask = pcd_attention_mask[:max_num_points]
        elif pcd_data.shape[0] < max_num_points:
            padding = torch.zeros(
                (
                    max_num_points - pcd_data.shape[0],
                    pcd_data.shape[1],
                )
            )
            pcd_data = torch.cat((pcd_data, padding), dim=0)

            # extend the attention mask with zeros for the padding points
            attention_mask_padding = torch.zeros(padding.shape[0], dtype=torch.bool)
            pcd_attention_mask = torch.cat((pcd_attention_mask, attention_mask_padding))

        # output shape: (num_points, 768 + 1) where the last dimension is the attention mask
        output_tensor = torch.cat((pcd_data, pcd_attention_mask.unsqueeze(1)), dim=1)
    return output_tensor.unsqueeze(0)  # add batch dimension


def load_image_from_base64(image):
    return Image.open(BytesIO(base64.b64decode(image)))


def process_images(images, image_processor, model_cfg):
    return image_processor(images, return_tensors="pt")["pixel_values"]


def tokenizer_image_token(
    prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None
):
    prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split("<image>")]

    def insert_separator(X, sep):
        return [ele for sublist in zip(X, [sep] * len(X)) for ele in sublist][:-1]

    input_ids = []
    offset = 0
    if (
        len(prompt_chunks) > 0
        and len(prompt_chunks[0]) > 0
        and prompt_chunks[0][0] == tokenizer.bos_token_id
    ):
        offset = 1
        input_ids.append(prompt_chunks[0][0])

    for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
        input_ids.extend(x[offset:])

    if return_tensors is not None:
        if return_tensors == "pt":
            return torch.tensor(input_ids, dtype=torch.long)
        raise ValueError(f"Unsupported tensor type: {return_tensors}")
    return input_ids


def get_model_name_from_path(model_path):
    model_path = model_path.strip("/")
    model_paths = model_path.split("/")
    if model_paths[-1].startswith("checkpoint-"):
        return model_paths[-2] + "_" + model_paths[-1]
    else:
        return model_paths[-1]


class KeywordsStoppingCriteria(StoppingCriteria):
    def __init__(self, keywords, tokenizer, input_ids):
        self.keywords = keywords
        self.keyword_ids = []
        for keyword in keywords:
            cur_keyword_ids = tokenizer(keyword).input_ids
            if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id:
                cur_keyword_ids = cur_keyword_ids[1:]
            self.keyword_ids.append(torch.tensor(cur_keyword_ids))
        self.tokenizer = tokenizer
        self.start_len = input_ids.shape[1]

    def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)"  # TODO
        offset = min(output_ids.shape[1] - self.start_len, 3)
        self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids]
        for keyword_id in self.keyword_ids:
            if output_ids[0, -keyword_id.shape[0] :] == keyword_id:
                return True
        outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0]
        for keyword in self.keywords:
            if keyword in outputs:
                return True
        return False