File size: 34,306 Bytes
bd6c4af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
"""
utils.py

This module provides utility functions for various tasks such as setting random seeds,
importing modules from files, managing checkpoint files, and saving video files from 
sequences of PIL images.

Functions:
    seed_everything(seed)
    import_filename(filename)
    delete_additional_ckpt(base_path, num_keep)
    save_videos_from_pil(pil_images, path, fps=8)

Dependencies:
    importlib
    os
    os.path as osp
    random
    shutil
    sys
    pathlib.Path
    av
    cv2
    mediapipe as mp
    numpy as np
    torch
    torchvision
    einops.rearrange
    moviepy.editor.AudioFileClip, VideoClip
    PIL.Image

Examples:
    seed_everything(42)
    imported_module = import_filename('path/to/your/module.py')
    delete_additional_ckpt('path/to/checkpoints', 1)
    save_videos_from_pil(pil_images, 'output/video.mp4', fps=12)

The functions in this module ensure reproducibility of experiments by seeding random number 
generators, allow dynamic importing of modules, manage checkpoint files by deleting extra ones, 
and provide a way to save sequences of images as video files.

Function Details:
    seed_everything(seed)
        Seeds all random number generators to ensure reproducibility.

    import_filename(filename)
        Imports a module from a given file location.

    delete_additional_ckpt(base_path, num_keep)
        Deletes additional checkpoint files in the given directory.

    save_videos_from_pil(pil_images, path, fps=8)
        Saves a sequence of images as a video using the Pillow library.

Attributes:
    _ (str): Placeholder for static type checking
"""

import importlib
import os
import os.path as osp
import random
import shutil
import subprocess
import sys
from pathlib import Path
from typing import List

import av
import cv2
import mediapipe as mp
import numpy as np
import torch
import torchvision
from einops import rearrange
from moviepy.editor import AudioFileClip, VideoClip
from PIL import Image


def seed_everything(seed):
    """
    Seeds all random number generators to ensure reproducibility.

    Args:
        seed (int): The seed value to set for all random number generators.
    """
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    np.random.seed(seed % (2**32))
    random.seed(seed)


def import_filename(filename):
    """
    Import a module from a given file location.

    Args:
        filename (str): The path to the file containing the module to be imported.

    Returns:
        module: The imported module.

    Raises:
        ImportError: If the module cannot be imported.

    Example:
        >>> imported_module = import_filename('path/to/your/module.py')
    """
    spec = importlib.util.spec_from_file_location("mymodule", filename)
    module = importlib.util.module_from_spec(spec)
    sys.modules[spec.name] = module
    spec.loader.exec_module(module)
    return module


def delete_additional_ckpt(base_path, num_keep):
    """
    Deletes additional checkpoint files in the given directory.

    Args:
        base_path (str): The path to the directory containing the checkpoint files.
        num_keep (int): The number of most recent checkpoint files to keep.

    Returns:
        None

    Raises:
        FileNotFoundError: If the base_path does not exist.

    Example:
        >>> delete_additional_ckpt('path/to/checkpoints', 1)
        # This will delete all but the most recent checkpoint file in 'path/to/checkpoints'.
    """
    dirs = []
    for d in os.listdir(base_path):
        if d.startswith("checkpoint-"):
            dirs.append(d)
    num_tot = len(dirs)
    if num_tot <= num_keep:
        return
    # ensure ckpt is sorted and delete the ealier!
    del_dirs = sorted(dirs, key=lambda x: int(
        x.split("-")[-1]))[: num_tot - num_keep]
    for d in del_dirs:
        path_to_dir = osp.join(base_path, d)
        if osp.exists(path_to_dir):
            shutil.rmtree(path_to_dir)


def save_videos_from_pil(pil_images, path, fps=8):
    """
    Save a sequence of images as a video using the Pillow library.

    Args:
        pil_images (List[PIL.Image]): A list of PIL.Image objects representing the frames of the video.
        path (str): The output file path for the video.
        fps (int, optional): The frames per second rate of the video. Defaults to 8.
    
    Returns:
        None
    
    Raises:
        ValueError: If the save format is not supported.

    This function takes a list of PIL.Image objects and saves them as a video file with a specified frame rate.
    The output file format is determined by the file extension of the provided path. Supported formats include
    .mp4, .avi, and .mkv. The function uses the Pillow library to handle the image processing and video
    creation.
    """
    save_fmt = Path(path).suffix
    os.makedirs(os.path.dirname(path), exist_ok=True)
    width, height = pil_images[0].size

    if save_fmt == ".mp4":
        codec = "libx264"
        container = av.open(path, "w")
        stream = container.add_stream(codec, rate=fps)

        stream.width = width
        stream.height = height

        for pil_image in pil_images:
            # pil_image = Image.fromarray(image_arr).convert("RGB")
            av_frame = av.VideoFrame.from_image(pil_image)
            container.mux(stream.encode(av_frame))
        container.mux(stream.encode())
        container.close()

    elif save_fmt == ".gif":
        pil_images[0].save(
            fp=path,
            format="GIF",
            append_images=pil_images[1:],
            save_all=True,
            duration=(1 / fps * 1000),
            loop=0,
        )
    else:
        raise ValueError("Unsupported file type. Use .mp4 or .gif.")


def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
    """
    Save a grid of videos as an animation or video.

    Args:
        videos (torch.Tensor): A tensor of shape (batch_size, channels, time, height, width)
            containing the videos to save.
        path (str): The path to save the video grid. Supported formats are .mp4, .avi, and .gif.
        rescale (bool, optional): If True, rescale the video to the original resolution.
            Defaults to False.
        n_rows (int, optional): The number of rows in the video grid. Defaults to 6.
        fps (int, optional): The frame rate of the saved video. Defaults to 8.

    Raises:
        ValueError: If the video format is not supported.

    Returns:
        None
    """
    videos = rearrange(videos, "b c t h w -> t b c h w")
    # height, width = videos.shape[-2:]
    outputs = []

    for x in videos:
        x = torchvision.utils.make_grid(x, nrow=n_rows)  # (c h w)
        x = x.transpose(0, 1).transpose(1, 2).squeeze(-1)  # (h w c)
        if rescale:
            x = (x + 1.0) / 2.0  # -1,1 -> 0,1
        x = (x * 255).numpy().astype(np.uint8)
        x = Image.fromarray(x)

        outputs.append(x)

    os.makedirs(os.path.dirname(path), exist_ok=True)

    save_videos_from_pil(outputs, path, fps)


def read_frames(video_path):
    """
    Reads video frames from a given video file.

    Args:
        video_path (str): The path to the video file.

    Returns:
        container (av.container.InputContainer): The input container object
                                                   containing the video stream.

    Raises:
        FileNotFoundError: If the video file is not found.
        RuntimeError: If there is an error in reading the video stream.

    The function reads the video frames from the specified video file using the
    Python AV library (av). It returns an input container object that contains
    the video stream. If the video file is not found, it raises a FileNotFoundError,
    and if there is an error in reading the video stream, it raises a RuntimeError.
    """
    container = av.open(video_path)

    video_stream = next(s for s in container.streams if s.type == "video")
    frames = []
    for packet in container.demux(video_stream):
        for frame in packet.decode():
            image = Image.frombytes(
                "RGB",
                (frame.width, frame.height),
                frame.to_rgb().to_ndarray(),
            )
            frames.append(image)

    return frames


def get_fps(video_path):
    """
    Get the frame rate (FPS) of a video file.

    Args:
        video_path (str): The path to the video file.

    Returns:
        int: The frame rate (FPS) of the video file.
    """
    container = av.open(video_path)
    video_stream = next(s for s in container.streams if s.type == "video")
    fps = video_stream.average_rate
    container.close()
    return fps


def tensor_to_video(tensor, output_video_file, audio_source, fps=25):
    """
    Converts a Tensor with shape [c, f, h, w] into a video and adds an audio track from the specified audio file.

    Args:
        tensor (Tensor): The Tensor to be converted, shaped [c, f, h, w].
        output_video_file (str): The file path where the output video will be saved.
        audio_source (str): The path to the audio file (WAV file) that contains the audio track to be added.
        fps (int): The frame rate of the output video. Default is 25 fps.
    """
    tensor = tensor.permute(1, 2, 3, 0).cpu(
    ).numpy()  # convert to [f, h, w, c]
    tensor = np.clip(tensor * 255, 0, 255).astype(
        np.uint8
    )  # to [0, 255]

    def make_frame(t):
        # get index
        frame_index = min(int(t * fps), tensor.shape[0] - 1)
        return tensor[frame_index]
    new_video_clip = VideoClip(make_frame, duration=tensor.shape[0] / fps)
    audio_clip = AudioFileClip(audio_source).subclip(0, tensor.shape[0] / fps)
    new_video_clip = new_video_clip.set_audio(audio_clip)
    new_video_clip.write_videofile(output_video_file, fps=fps, audio_codec='aac')


silhouette_ids = [
    10, 338, 297, 332, 284, 251, 389, 356, 454, 323, 361, 288,
    397, 365, 379, 378, 400, 377, 152, 148, 176, 149, 150, 136,
    172, 58, 132, 93, 234, 127, 162, 21, 54, 103, 67, 109
]
lip_ids = [61, 185, 40, 39, 37, 0, 267, 269, 270, 409, 291,
           146, 91, 181, 84, 17, 314, 405, 321, 375]


def compute_face_landmarks(detection_result, h, w):
    """
    Compute face landmarks from a detection result.

    Args:
        detection_result (mediapipe.solutions.face_mesh.FaceMesh): The detection result containing face landmarks.
        h (int): The height of the video frame.
        w (int): The width of the video frame.

    Returns:
        face_landmarks_list (list): A list of face landmarks.
    """
    face_landmarks_list = detection_result.face_landmarks
    if len(face_landmarks_list) != 1:
        print("#face is invalid:", len(face_landmarks_list))
        return []
    return [[p.x * w, p.y * h] for p in face_landmarks_list[0]]


def get_landmark(file):
    """
    This function takes a file as input and returns the facial landmarks detected in the file.

    Args:
        file (str): The path to the file containing the video or image to be processed.

    Returns:
        Tuple[List[float], List[float]]: A tuple containing two lists of floats representing the x and y coordinates of the facial landmarks.
    """
    model_path = "pretrained_models/face_analysis/models/face_landmarker_v2_with_blendshapes.task"
    BaseOptions = mp.tasks.BaseOptions
    FaceLandmarker = mp.tasks.vision.FaceLandmarker
    FaceLandmarkerOptions = mp.tasks.vision.FaceLandmarkerOptions
    VisionRunningMode = mp.tasks.vision.RunningMode
    # Create a face landmarker instance with the video mode:
    options = FaceLandmarkerOptions(
        base_options=BaseOptions(model_asset_path=model_path),
        running_mode=VisionRunningMode.IMAGE,
    )

    with FaceLandmarker.create_from_options(options) as landmarker:
        image = mp.Image.create_from_file(str(file))
        height, width = image.height, image.width
        face_landmarker_result = landmarker.detect(image)
        face_landmark = compute_face_landmarks(
            face_landmarker_result, height, width)

    return np.array(face_landmark), height, width


def get_landmark_overframes(landmark_model, frames_path):
    """
    This function iterate frames and returns the facial landmarks detected in each frame.

    Args:
        landmark_model: mediapipe landmark model instance
        frames_path (str): The path to the video frames.

    Returns:
        List[List[float], float, float]: A List containing two lists of floats representing the x and y coordinates of the facial landmarks.
    """

    face_landmarks = []

    for file in sorted(os.listdir(frames_path)):
        image = mp.Image.create_from_file(os.path.join(frames_path, file))
        height, width = image.height, image.width
        landmarker_result = landmark_model.detect(image)
        frame_landmark = compute_face_landmarks(
            landmarker_result, height, width)
        face_landmarks.append(frame_landmark)

    return face_landmarks, height, width


def get_lip_mask(landmarks, height, width, out_path=None, expand_ratio=2.0):
    """
    Extracts the lip region from the given landmarks and saves it as an image.

    Parameters:
        landmarks (numpy.ndarray): Array of facial landmarks.
        height (int): Height of the output lip mask image.
        width (int): Width of the output lip mask image.
        out_path (pathlib.Path): Path to save the lip mask image.
        expand_ratio (float): Expand ratio of mask.
    """
    lip_landmarks = np.take(landmarks, lip_ids, 0)
    min_xy_lip = np.round(np.min(lip_landmarks, 0))
    max_xy_lip = np.round(np.max(lip_landmarks, 0))
    min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1] = expand_region(
        [min_xy_lip[0], max_xy_lip[0], min_xy_lip[1], max_xy_lip[1]], width, height, expand_ratio)
    lip_mask = np.zeros((height, width), dtype=np.uint8)
    lip_mask[round(min_xy_lip[1]):round(max_xy_lip[1]),
             round(min_xy_lip[0]):round(max_xy_lip[0])] = 255
    if out_path:
        cv2.imwrite(str(out_path), lip_mask)
        return None

    return lip_mask


def get_union_lip_mask(landmarks, height, width, expand_ratio=1):
    """
    Extracts the lip region from the given landmarks and saves it as an image.

    Parameters:
        landmarks (numpy.ndarray): Array of facial landmarks.
        height (int): Height of the output lip mask image.
        width (int): Width of the output lip mask image.
        expand_ratio (float): Expand ratio of mask.
    """
    lip_masks = []
    for landmark in landmarks:
        lip_masks.append(get_lip_mask(landmarks=landmark, height=height,
                     width=width, expand_ratio=expand_ratio))
    union_mask = get_union_mask(lip_masks)
    return union_mask


def get_face_mask(landmarks, height, width, out_path=None, expand_ratio=1.2):
    """
    Generate a face mask based on the given landmarks.

    Args:
        landmarks (numpy.ndarray): The landmarks of the face.
        height (int): The height of the output face mask image.
        width (int): The width of the output face mask image.
        out_path (pathlib.Path): The path to save the face mask image.
        expand_ratio (float): Expand ratio of mask.
    Returns:
        None. The face mask image is saved at the specified path.
    """
    face_landmarks = np.take(landmarks, silhouette_ids, 0)
    min_xy_face = np.round(np.min(face_landmarks, 0))
    max_xy_face = np.round(np.max(face_landmarks, 0))
    min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1] = expand_region(
        [min_xy_face[0], max_xy_face[0], min_xy_face[1], max_xy_face[1]], width, height, expand_ratio)
    face_mask = np.zeros((height, width), dtype=np.uint8)
    face_mask[round(min_xy_face[1]):round(max_xy_face[1]),
              round(min_xy_face[0]):round(max_xy_face[0])] = 255
    if out_path:
        cv2.imwrite(str(out_path), face_mask)
        return None

    return face_mask


def get_union_face_mask(landmarks, height, width, expand_ratio=1):
    """
    Generate a face mask based on the given landmarks.

    Args:
        landmarks (numpy.ndarray): The landmarks of the face.
        height (int): The height of the output face mask image.
        width (int): The width of the output face mask image.
        expand_ratio (float): Expand ratio of mask.
    Returns:
        None. The face mask image is saved at the specified path.
    """
    face_masks = []
    for landmark in landmarks:
        face_masks.append(get_face_mask(landmarks=landmark,height=height,width=width,expand_ratio=expand_ratio))
    union_mask = get_union_mask(face_masks)
    return union_mask

def get_mask(file, cache_dir, face_expand_raio):
    """
    Generate a face mask based on the given landmarks and save it to the specified cache directory.

    Args:
        file (str): The path to the file containing the landmarks.
        cache_dir (str): The directory to save the generated face mask.

    Returns:
        None
    """
    landmarks, height, width = get_landmark(file)
    file_name = os.path.basename(file).split(".")[0]
    get_lip_mask(landmarks, height, width, os.path.join(
        cache_dir, f"{file_name}_lip_mask.png"))
    get_face_mask(landmarks, height, width, os.path.join(
        cache_dir, f"{file_name}_face_mask.png"), face_expand_raio)
    get_blur_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask.png"), os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), kernel_size=(51, 51))
    get_blur_mask(os.path.join(
        cache_dir, f"{file_name}_lip_mask.png"), os.path.join(
        cache_dir, f"{file_name}_sep_lip.png"), kernel_size=(31, 31))
    get_background_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join(
        cache_dir, f"{file_name}_sep_background.png"))
    get_sep_face_mask(os.path.join(
        cache_dir, f"{file_name}_face_mask_blur.png"), os.path.join(
        cache_dir, f"{file_name}_sep_lip.png"), os.path.join(
        cache_dir, f"{file_name}_sep_face.png"))


def expand_region(region, image_w, image_h, expand_ratio=1.0):
    """
    Expand the given region by a specified ratio.
    Args:
        region (tuple): A tuple containing the coordinates (min_x, max_x, min_y, max_y) of the region.
        image_w (int): The width of the image.
        image_h (int): The height of the image.
        expand_ratio (float, optional): The ratio by which the region should be expanded. Defaults to 1.0.

    Returns:
        tuple: A tuple containing the expanded coordinates (min_x, max_x, min_y, max_y) of the region.
    """

    min_x, max_x, min_y, max_y = region
    mid_x = (max_x + min_x) // 2
    side_len_x = (max_x - min_x) * expand_ratio
    mid_y = (max_y + min_y) // 2
    side_len_y = (max_y - min_y) * expand_ratio
    min_x = mid_x - side_len_x // 2
    max_x = mid_x + side_len_x // 2
    min_y = mid_y - side_len_y // 2
    max_y = mid_y + side_len_y // 2
    if min_x < 0:
        max_x -= min_x
        min_x = 0
    if max_x > image_w:
        min_x -= max_x - image_w
        max_x = image_w
    if min_y < 0:
        max_y -= min_y
        min_y = 0
    if max_y > image_h:
        min_y -= max_y - image_h
        max_y = image_h

    return round(min_x), round(max_x), round(min_y), round(max_y)


def get_blur_mask(file_path, output_file_path, resize_dim=(64, 64), kernel_size=(101, 101)):
    """
    Read, resize, blur, normalize, and save an image.

    Parameters:
    file_path (str): Path to the input image file.
    output_dir (str): Path to the output directory to save blurred images.
    resize_dim (tuple): Dimensions to resize the images to.
    kernel_size (tuple): Size of the kernel to use for Gaussian blur.
    """
    # Read the mask image
    mask = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)

    # Check if the image is loaded successfully
    if mask is not None:
        normalized_mask = blur_mask(mask,resize_dim=resize_dim,kernel_size=kernel_size)
        # Save the normalized mask image
        cv2.imwrite(output_file_path, normalized_mask)
        return f"Processed, normalized, and saved: {output_file_path}"
    return f"Failed to load image: {file_path}"


def blur_mask(mask, resize_dim=(64, 64), kernel_size=(51, 51)):
    """
    Read, resize, blur, normalize, and save an image.

    Parameters:
    file_path (str): Path to the input image file.
    resize_dim (tuple): Dimensions to resize the images to.
    kernel_size (tuple): Size of the kernel to use for Gaussian blur.
    """
    # Check if the image is loaded successfully
    normalized_mask = None
    if mask is not None:
        # Resize the mask image
        resized_mask = cv2.resize(mask, resize_dim)
        # Apply Gaussian blur to the resized mask image
        blurred_mask = cv2.GaussianBlur(resized_mask, kernel_size, 0)
        # Normalize the blurred image
        normalized_mask = cv2.normalize(
            blurred_mask, None, 0, 255, cv2.NORM_MINMAX)
        # Save the normalized mask image
    return normalized_mask

def get_background_mask(file_path, output_file_path):
    """
    Read an image, invert its values, and save the result.

    Parameters:
    file_path (str): Path to the input image file.
    output_dir (str): Path to the output directory to save the inverted image.
    """
    # Read the image
    image = cv2.imread(file_path, cv2.IMREAD_GRAYSCALE)

    if image is None:
        print(f"Failed to load image: {file_path}")
        return

    # Invert the image
    inverted_image = 1.0 - (
        image / 255.0
    )  # Assuming the image values are in [0, 255] range
    # Convert back to uint8
    inverted_image = (inverted_image * 255).astype(np.uint8)

    # Save the inverted image
    cv2.imwrite(output_file_path, inverted_image)
    print(f"Processed and saved: {output_file_path}")


def get_sep_face_mask(file_path1, file_path2, output_file_path):
    """
    Read two images, subtract the second one from the first, and save the result.

    Parameters:
    output_dir (str): Path to the output directory to save the subtracted image.
    """

    # Read the images
    mask1 = cv2.imread(file_path1, cv2.IMREAD_GRAYSCALE)
    mask2 = cv2.imread(file_path2, cv2.IMREAD_GRAYSCALE)

    if mask1 is None or mask2 is None:
        print(f"Failed to load images: {file_path1}")
        return

    # Ensure the images are the same size
    if mask1.shape != mask2.shape:
        print(
            f"Image shapes do not match for {file_path1}: {mask1.shape} vs {mask2.shape}"
        )
        return

    # Subtract the second mask from the first
    result_mask = cv2.subtract(mask1, mask2)

    # Save the result mask image
    cv2.imwrite(output_file_path, result_mask)
    print(f"Processed and saved: {output_file_path}")

def resample_audio(input_audio_file: str, output_audio_file: str, sample_rate: int):
    p = subprocess.Popen([
        "ffmpeg", "-y", "-v", "error", "-i", input_audio_file, "-ar", str(sample_rate), output_audio_file
    ])
    ret = p.wait()
    assert ret == 0, "Resample audio failed!"
    return output_audio_file

def get_face_region(image_path: str, detector):
    try:
        image = cv2.imread(image_path)
        if image is None:
            print(f"Failed to open image: {image_path}. Skipping...")
            return None, None

        mp_image = mp.Image(image_format=mp.ImageFormat.SRGB, data=image)
        detection_result = detector.detect(mp_image)

        # Adjust mask creation for the three-channel image
        mask = np.zeros_like(image, dtype=np.uint8)

        for detection in detection_result.detections:
            bbox = detection.bounding_box
            start_point = (int(bbox.origin_x), int(bbox.origin_y))
            end_point = (int(bbox.origin_x + bbox.width),
                         int(bbox.origin_y + bbox.height))
            cv2.rectangle(mask, start_point, end_point,
                          (255, 255, 255), thickness=-1)

        save_path = image_path.replace("images", "face_masks")
        os.makedirs(os.path.dirname(save_path), exist_ok=True)
        cv2.imwrite(save_path, mask)
        # print(f"Processed and saved {save_path}")
        return image_path, mask
    except Exception as e:
        print(f"Error processing image {image_path}: {e}")
        return None, None


def save_checkpoint(model: torch.nn.Module, save_dir: str, prefix: str, ckpt_num: int, total_limit: int = -1) -> None:
    """
    Save the model's state_dict to a checkpoint file.

    If `total_limit` is provided, this function will remove the oldest checkpoints
    until the total number of checkpoints is less than the specified limit.

    Args:
        model (nn.Module): The model whose state_dict is to be saved.
        save_dir (str): The directory where the checkpoint will be saved.
        prefix (str): The prefix for the checkpoint file name.
        ckpt_num (int): The checkpoint number to be saved.
        total_limit (int, optional): The maximum number of checkpoints to keep.
            Defaults to None, in which case no checkpoints will be removed.

    Raises:
        FileNotFoundError: If the save directory does not exist.
        ValueError: If the checkpoint number is negative.
        OSError: If there is an error saving the checkpoint.
    """

    if not osp.exists(save_dir):
        raise FileNotFoundError(
            f"The save directory {save_dir} does not exist.")

    if ckpt_num < 0:
        raise ValueError(f"Checkpoint number {ckpt_num} must be non-negative.")

    save_path = osp.join(save_dir, f"{prefix}-{ckpt_num}.pth")

    if total_limit > 0:
        checkpoints = os.listdir(save_dir)
        checkpoints = [d for d in checkpoints if d.startswith(prefix)]
        checkpoints = sorted(
            checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0])
        )

        if len(checkpoints) >= total_limit:
            num_to_remove = len(checkpoints) - total_limit + 1
            removing_checkpoints = checkpoints[0:num_to_remove]
            print(
                f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
            )
            print(
                f"Removing checkpoints: {', '.join(removing_checkpoints)}"
            )

            for removing_checkpoint in removing_checkpoints:
                removing_checkpoint_path = osp.join(
                    save_dir, removing_checkpoint)
                try:
                    os.remove(removing_checkpoint_path)
                except OSError as e:
                    print(
                        f"Error removing checkpoint {removing_checkpoint_path}: {e}")

    state_dict = model.state_dict()
    try:
        torch.save(state_dict, save_path)
        print(f"Checkpoint saved at {save_path}")
    except OSError as e:
        raise OSError(f"Error saving checkpoint at {save_path}: {e}") from e


def init_output_dir(dir_list: List[str]):
    """
    Initialize the output directories.

    This function creates the directories specified in the `dir_list`. If a directory already exists, it does nothing.

    Args:
        dir_list (List[str]): List of directory paths to create.
    """
    for path in dir_list:
        os.makedirs(path, exist_ok=True)


def load_checkpoint(cfg, save_dir, accelerator):
    """
    Load the most recent checkpoint from the specified directory.

    This function loads the latest checkpoint from the `save_dir` if the `resume_from_checkpoint` parameter is set to "latest".
    If a specific checkpoint is provided in `resume_from_checkpoint`, it loads that checkpoint. If no checkpoint is found,
    it starts training from scratch.

    Args:
        cfg: The configuration object containing training parameters.
        save_dir (str): The directory where checkpoints are saved.
        accelerator: The accelerator object for distributed training.

    Returns:
        int: The global step at which to resume training.
    """
    if cfg.resume_from_checkpoint != "latest":
        resume_dir = cfg.resume_from_checkpoint
    else:
        resume_dir = save_dir
    # Get the most recent checkpoint
    dirs = os.listdir(resume_dir)

    dirs = [d for d in dirs if d.startswith("checkpoint")]
    if len(dirs) > 0:
        dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
        path = dirs[-1]
        accelerator.load_state(os.path.join(resume_dir, path))
        accelerator.print(f"Resuming from checkpoint {path}")
        global_step = int(path.split("-")[1])
    else:
        accelerator.print(
            f"Could not find checkpoint under {resume_dir}, start training from scratch")
        global_step = 0

    return global_step


def compute_snr(noise_scheduler, timesteps):
    """
    Computes SNR as per
    https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/
            521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L847-L849
    """
    alphas_cumprod = noise_scheduler.alphas_cumprod
    sqrt_alphas_cumprod = alphas_cumprod**0.5
    sqrt_one_minus_alphas_cumprod = (1.0 - alphas_cumprod) ** 0.5

    # Expand the tensors.
    # Adapted from https://github.com/TiankaiHang/Min-SNR-Diffusion-Training/blob/
    #              521b624bd70c67cee4bdf49225915f5945a872e3/guided_diffusion/gaussian_diffusion.py#L1026
    sqrt_alphas_cumprod = sqrt_alphas_cumprod.to(device=timesteps.device)[
        timesteps
    ].float()
    while len(sqrt_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_alphas_cumprod = sqrt_alphas_cumprod[..., None]
    alpha = sqrt_alphas_cumprod.expand(timesteps.shape)

    sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod.to(
        device=timesteps.device
    )[timesteps].float()
    while len(sqrt_one_minus_alphas_cumprod.shape) < len(timesteps.shape):
        sqrt_one_minus_alphas_cumprod = sqrt_one_minus_alphas_cumprod[..., None]
    sigma = sqrt_one_minus_alphas_cumprod.expand(timesteps.shape)

    # Compute SNR.
    snr = (alpha / sigma) ** 2
    return snr


def extract_audio_from_videos(video_path: Path, audio_output_path: Path) -> Path:
    """
    Extract audio from a video file and save it as a WAV file.

    This function uses ffmpeg to extract the audio stream from a given video file and saves it as a WAV file
    in the specified output directory.

    Args:
        video_path (Path): The path to the input video file.
        output_dir (Path): The directory where the extracted audio file will be saved.

    Returns:
        Path: The path to the extracted audio file.

    Raises:
        subprocess.CalledProcessError: If the ffmpeg command fails to execute.
    """
    ffmpeg_command = [
        'ffmpeg', '-y',
        '-i', str(video_path),
        '-vn', '-acodec',
        "pcm_s16le", '-ar', '16000', '-ac', '2',
        str(audio_output_path)
    ]

    try:
        print(f"Running command: {' '.join(ffmpeg_command)}")
        subprocess.run(ffmpeg_command, check=True)
    except subprocess.CalledProcessError as e:
        print(f"Error extracting audio from video: {e}")
        raise

    return audio_output_path


def convert_video_to_images(video_path: Path, output_dir: Path) -> Path:
    """
    Convert a video file into a sequence of images.

    This function uses ffmpeg to convert each frame of the given video file into an image. The images are saved
    in a directory named after the video file stem under the specified output directory.

    Args:
        video_path (Path): The path to the input video file.
        output_dir (Path): The directory where the extracted images will be saved.

    Returns:
        Path: The path to the directory containing the extracted images.

    Raises:
        subprocess.CalledProcessError: If the ffmpeg command fails to execute.
    """
    ffmpeg_command = [
        'ffmpeg',
        '-i', str(video_path),
        '-vf', 'fps=25',
        str(output_dir / '%04d.png')
    ]

    try:
        print(f"Running command: {' '.join(ffmpeg_command)}")
        subprocess.run(ffmpeg_command, check=True)
    except subprocess.CalledProcessError as e:
        print(f"Error converting video to images: {e}")
        raise

    return output_dir


def get_union_mask(masks):
    """
    Compute the union of a list of masks.

    This function takes a list of masks and computes their union by taking the maximum value at each pixel location.
    Additionally, it finds the bounding box of the non-zero regions in the mask and sets the bounding box area to white.

    Args:
        masks (list of np.ndarray): List of masks to be combined.

    Returns:
        np.ndarray: The union of the input masks.
    """
    union_mask = None
    for mask in masks:
        if union_mask is None:
            union_mask = mask
        else:
            union_mask = np.maximum(union_mask, mask)

    if union_mask is not None:
        # Find the bounding box of the non-zero regions in the mask
        rows = np.any(union_mask, axis=1)
        cols = np.any(union_mask, axis=0)
        try:
            ymin, ymax = np.where(rows)[0][[0, -1]]
            xmin, xmax = np.where(cols)[0][[0, -1]]
        except Exception as e:
            print(str(e))
            return 0.0

        # Set bounding box area to white
        union_mask[ymin: ymax + 1, xmin: xmax + 1] = np.max(union_mask)

    return union_mask


def move_final_checkpoint(save_dir, module_dir, prefix):
    """
    Move the final checkpoint file to the save directory.

    This function identifies the latest checkpoint file based on the given prefix and moves it to the specified save directory.

    Args:
        save_dir (str): The directory where the final checkpoint file should be saved.
        module_dir (str): The directory containing the checkpoint files.
        prefix (str): The prefix used to identify checkpoint files.

    Raises:
        ValueError: If no checkpoint files are found with the specified prefix.
    """
    checkpoints = os.listdir(module_dir)
    checkpoints = [d for d in checkpoints if d.startswith(prefix)]
    checkpoints = sorted(
        checkpoints, key=lambda x: int(x.split("-")[1].split(".")[0])
    )
    shutil.copy2(os.path.join(
        module_dir, checkpoints[-1]), os.path.join(save_dir, prefix + '.pth'))