File size: 938 Bytes
8446093
0a32a5c
 
 
2a472f8
03728a5
1d02de0
8446093
0a32a5c
03728a5
d8f3530
8446093
0a32a5c
1d02de0
3e5c162
0a32a5c
3e5c162
0a32a5c
8446093
0a32a5c
 
3e5c162
 
 
0506c40
 
3e5c162
8446093
 
2a472f8
fb5c2f2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import gradio as gr
from transformers import AutoModel
from PIL import Image
import torch
import os
from huggingface_hub import login
import spaces

# Load the model
model = AutoModel.from_pretrained("jcsagar/CXR-LLAVA-v2", trust_remote_code=True)
model = model.to("cuda")

# Define the function to generate the report
@spaces.GPU
def ask_question(question, image):
    image = Image.open(image).convert("RGB")
    response = model.ask_question(question, image)
    return response

# Create the Gradio interface
interface = gr.Interface(
    fn=ask_question,
    inputs=[gr.Textbox(lines=1, placeholder="Enter your question here", label="Question"),
            gr.Image(type="filepath", label="Upload Image")],
    outputs=gr.Textbox(label="Report"),
    title="CXR Report Creator",
    description="Upload an image and enter a question to use with the CXR-LLAVA-v2 model."
)

# Launch the interface with API enabled
interface.launch()