File size: 995 Bytes
fb0d4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import streamlit as st
from transformers import pipeline

# Load the text classification model pipeline
classifier = pipeline("text-classification",model='isom5240sp24/bert-base-uncased-emotion', return_all_scores=True)

# Streamlit application title
st.title("Text Classification")
st.write("Classification for 6 emotions: sadness, joy, love, anger, fear, surprise")

# Text input for user to enter the text to classify
text = st.text_area("Enter the text to classify", "")

# Perform text classification when the user clicks the "Classify" button
if st.button("Classify"):
    # Perform text classification on the input text
    results = classifier(text)[0]

    # Display the classification result
    max_score = float('-inf')
    max_label = ''

    for result in results:
        if result['score'] > max_score:
            max_score = result['score']
            max_label = result['label']

    st.write("Text:", text)
    st.write("Label:", max_label)
    st.write("Score:", max_score)