File size: 2,643 Bytes
0dcbd33 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
# This is the same dockerfile from `Helper_Files/Dockerfiles/tldw-nvidia_amd64_Dockerfile`. c/p here so people see a 'Dockerfile' in the root directory and know what to do.
# Usage
# docker build -t tldw-nvidia_amd64 .
# docker run --gpus=all -p 7860:7860 -v tldw_volume:/tldw tldw-nvidia_amd64
#
# If the above command doesn't work and it hangs on start, use the following command:
#
# sudo docker run -it -p 7860:7860 -v tldw_volume:/tdlw tldw-nvidia_amd64 bash
#
# Once in the container, run the following command:
#
# python summarize.py -gui
#
# And you should be good.
# Use Nvidia image:
FROM nvidia/cuda:12.6.1-cudnn-runtime-ubuntu24.04
# Use an official Python runtime as a parent image
#FROM python:3.10.15-slim-bookworm
# Set build arguments
ARG REPO_URL=https://github.com/rmusser01/tldw.git
ARG BRANCH=main
ARG GPU_SUPPORT=cpu
# Install system dependencies
RUN apt-get update && apt-get install -y \
ffmpeg \
libsqlite3-dev \
build-essential \
git \
python3 \
python3-pyaudio \
portaudio19-dev \
python3-pip \
portaudio19-dev \
python3-venv \
&& rm -rf /var/lib/apt/lists/*
# Set the working directory in the container
WORKDIR /tldw
# Clone the repository
RUN git clone -b ${BRANCH} ${REPO_URL} .
# Create and activate virtual environment
RUN python3 -m venv ./venv
ENV PATH="/tldw/venv/bin:$PATH"
# Upgrade pip and install wheel
RUN pip install --upgrade pip wheel
# Install CUDA
RUN pip install nvidia-cublas-cu12 nvidia-cudnn-cu12
# setup PATH
RUN export LD_LIBRARY_PATH=`python3 -c 'import os; import nvidia.cublas.lib; import nvidia.cudnn.lib; print(os.path.dirname(nvidia.cublas.lib.__file__) + ":" + os.path.dirname(nvidia.cudnn.lib.__file__))'`
# Install PyTorch based on GPU support
RUN if [ "$GPU_SUPPORT" = "cuda" ]; then \
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cu123; \
elif [ "$GPU_SUPPORT" = "amd" ]; then \
pip install torch-directml; \
else \
pip install torch==2.2.2 torchvision==0.17.2 torchaudio==2.2.2 --index-url https://download.pytorch.org/whl/cpu; \
fi
# Install other requirements
RUN pip install -r requirements.txt
# Update config.txt for CPU if needed
RUN if [ "$GPU_SUPPORT" = "cpu" ]; then \
sed -i 's/cuda/cpu/' ./Config_Files/config.txt; \
fi
# Create a volume for persistent storage
VOLUME /tldw
# Make port 7860 available to the world outside this container
EXPOSE 7860
# Set listening to all interfaces
ENV GRADIO_SERVER_NAME="0.0.0.0"
# Run the application
CMD ["python", "summarize.py", "-gui", "-log DEBUG"] |