File size: 25,151 Bytes
5c00143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
import numpy as np
import cv2
import os
import json
from tqdm import tqdm
from glob import glob
import matplotlib.pyplot as plt
import tensorflow as tf
from tensorflow.keras import layers, models, optimizers

from custom_layers import yolov4_neck, yolov4_head, nms
from utils import load_weights, get_detection_data, draw_bbox, voc_ap, draw_plot_func, read_txt_to_list
from config import yolo_config
from loss import yolo_loss


class Yolov4(object):
    def __init__(self,
                 weight_path=None,
                 class_name_path='coco_classes.txt',
                 config=yolo_config,
                 ):
        assert config['img_size'][0] == config['img_size'][1], 'not support yet'
        assert config['img_size'][0] % config['strides'][-1] == 0, 'must be a multiple of last stride'
        self.class_names = [line.strip() for line in open(class_name_path).readlines()]
        self.img_size = yolo_config['img_size']
        self.num_classes = len(self.class_names)
        self.weight_path = weight_path
        self.anchors = np.array(yolo_config['anchors']).reshape((3, 3, 2))
        self.xyscale = yolo_config['xyscale']
        self.strides = yolo_config['strides']
        self.output_sizes = [self.img_size[0] // s for s in self.strides]
        self.class_color = {name: list(np.random.random(size=3)*255) for name in self.class_names}
        # Training
        self.max_boxes = yolo_config['max_boxes']
        self.iou_loss_thresh = yolo_config['iou_loss_thresh']
        self.config = yolo_config
        assert self.num_classes > 0, 'no classes detected!'

        tf.keras.backend.clear_session()
        if yolo_config['num_gpu'] > 1:
            mirrored_strategy = tf.distribute.MirroredStrategy()
            with mirrored_strategy.scope():
                self.build_model(load_pretrained=True if self.weight_path else False)
        else:
            self.build_model(load_pretrained=True if self.weight_path else False)

    def build_model(self, load_pretrained=True):
        # core yolo model
        input_layer = layers.Input(self.img_size)
        yolov4_output = yolov4_neck(input_layer, self.num_classes)
        self.yolo_model = models.Model(input_layer, yolov4_output)

        # Build training model
        y_true = [
            layers.Input(name='input_2', shape=(52, 52, 3, (self.num_classes + 5))),  # label small boxes
            layers.Input(name='input_3', shape=(26, 26, 3, (self.num_classes + 5))),  # label medium boxes
            layers.Input(name='input_4', shape=(13, 13, 3, (self.num_classes + 5))),  # label large boxes
            layers.Input(name='input_5', shape=(self.max_boxes, 4)),  # true bboxes
        ]
        loss_list = tf.keras.layers.Lambda(yolo_loss, name='yolo_loss',
                                           arguments={'num_classes': self.num_classes,
                                                      'iou_loss_thresh': self.iou_loss_thresh,
                                                      'anchors': self.anchors})([*self.yolo_model.output, *y_true])
        self.training_model = models.Model([self.yolo_model.input, *y_true], loss_list)

        # Build inference model
        yolov4_output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
        # output: [boxes, scores, classes, valid_detections]
        self.inference_model = models.Model(input_layer,
                                            nms(yolov4_output, self.img_size, self.num_classes,
                                                iou_threshold=self.config['iou_threshold'],
                                                score_threshold=self.config['score_threshold']))

        if load_pretrained and self.weight_path and self.weight_path.endswith('.weights'):
            if self.weight_path.endswith('.weights'):
                load_weights(self.yolo_model, self.weight_path)
                print(f'load from {self.weight_path}')
            elif self.weight_path.endswith('.h5'):
                self.training_model.load_weights(self.weight_path)
                print(f'load from {self.weight_path}')

        self.training_model.compile(optimizer=optimizers.Adam(lr=1e-3),
                                    loss={'yolo_loss': lambda y_true, y_pred: y_pred})

    def load_model(self, path):
        self.yolo_model = models.load_model(path, compile=False)
        yolov4_output = yolov4_head(self.yolo_model.output, self.num_classes, self.anchors, self.xyscale)
        self.inference_model = models.Model(self.yolo_model.input,
                                            nms(yolov4_output, self.img_size, self.num_classes))  # [boxes, scores, classes, valid_detections]

    def save_model(self, path):
        self.yolo_model.save(path)

    def preprocess_img(self, img):
        img = cv2.resize(img, self.img_size[:2])
        img = img / 255.
        return img

    def fit(self, train_data_gen, epochs, val_data_gen=None, initial_epoch=0, callbacks=None):
        self.training_model.fit(train_data_gen,
                                steps_per_epoch=len(train_data_gen),
                                validation_data=val_data_gen,
                                validation_steps=len(val_data_gen),
                                epochs=epochs,
                                callbacks=callbacks,
                                initial_epoch=initial_epoch)
    # raw_img: RGB
    def predict_img(self, raw_img, random_color=True, plot_img=True, figsize=(10, 10), show_text=True, return_output=True):
        print('img shape: ', raw_img.shape)
        img = self.preprocess_img(raw_img)
        imgs = np.expand_dims(img, axis=0)
        pred_output = self.inference_model.predict(imgs)
        detections = get_detection_data(img=raw_img,
                                        model_outputs=pred_output,
                                        class_names=self.class_names)

        output_img = draw_bbox(raw_img, detections, cmap=self.class_color, random_color=random_color, figsize=figsize,
                  show_text=show_text, show_img=False)
        if return_output:
            return output_img, detections
        else:
            return detections

    def predict(self, img_path, random_color=True, plot_img=True, figsize=(10, 10), show_text=True):
        raw_img = img_path
        return self.predict_img(raw_img, random_color, plot_img, figsize, show_text)

    def export_gt(self, annotation_path, gt_folder_path):
        with open(annotation_path) as file:
            for line in file:
                line = line.split(' ')
                filename = line[0].split(os.sep)[-1].split('.')[0]
                objs = line[1:]
                # export txt file
                with open(os.path.join(gt_folder_path, filename + '.txt'), 'w') as output_file:
                    for obj in objs:
                        x_min, y_min, x_max, y_max, class_id = [float(o) for o in obj.strip().split(',')]
                        output_file.write(f'{self.class_names[int(class_id)]} {x_min} {y_min} {x_max} {y_max}\n')

    def export_prediction(self, annotation_path, pred_folder_path, img_folder_path, bs=2):
        with open(annotation_path) as file:
            img_paths = [os.path.join(img_folder_path, line.split(' ')[0].split(os.sep)[-1]) for line in file]
            # print(img_paths[:20])
            for batch_idx in tqdm(range(0, len(img_paths), bs)):
                # print(len(img_paths), batch_idx, batch_idx*bs, (batch_idx+1)*bs)
                paths = img_paths[batch_idx:batch_idx+bs]
                # print(paths)
                # read and process img
                imgs = np.zeros((len(paths), *self.img_size))
                raw_img_shapes = []
                for j, path in enumerate(paths):
                    img = cv2.imread(path)
                    raw_img_shapes.append(img.shape)
                    img = self.preprocess_img(img)
                    imgs[j] = img

                # process batch output
                b_boxes, b_scores, b_classes, b_valid_detections = self.inference_model.predict(imgs)
                for k in range(len(paths)):
                    num_boxes = b_valid_detections[k]
                    raw_img_shape = raw_img_shapes[k]
                    boxes = b_boxes[k, :num_boxes]
                    classes = b_classes[k, :num_boxes]
                    scores = b_scores[k, :num_boxes]
                    # print(raw_img_shape)
                    boxes[:, [0, 2]] = (boxes[:, [0, 2]] * raw_img_shape[1])  # w
                    boxes[:, [1, 3]] = (boxes[:, [1, 3]] * raw_img_shape[0])  # h
                    cls_names = [self.class_names[int(c)] for c in classes]
                    # print(raw_img_shape, boxes.astype(int), cls_names, scores)

                    img_path = paths[k]
                    filename = img_path.split(os.sep)[-1].split('.')[0]
                    # print(filename)
                    output_path = os.path.join(pred_folder_path, filename+'.txt')
                    with open(output_path, 'w') as pred_file:
                        for box_idx in range(num_boxes):
                            b = boxes[box_idx]
                            pred_file.write(f'{cls_names[box_idx]} {scores[box_idx]} {b[0]} {b[1]} {b[2]} {b[3]}\n')


    def eval_map(self, gt_folder_path, pred_folder_path, temp_json_folder_path, output_files_path):
        """Process Gt"""
        ground_truth_files_list = glob(gt_folder_path + '/*.txt')
        assert len(ground_truth_files_list) > 0, 'no ground truth file'
        ground_truth_files_list.sort()
        # dictionary with counter per class
        gt_counter_per_class = {}
        counter_images_per_class = {}

        gt_files = []
        for txt_file in ground_truth_files_list:
            file_id = txt_file.split(".txt", 1)[0]
            file_id = os.path.basename(os.path.normpath(file_id))
            # check if there is a correspondent detection-results file
            temp_path = os.path.join(pred_folder_path, (file_id + ".txt"))
            assert os.path.exists(temp_path), "Error. File not found: {}\n".format(temp_path)
            lines_list = read_txt_to_list(txt_file)
            # create ground-truth dictionary
            bounding_boxes = []
            is_difficult = False
            already_seen_classes = []
            for line in lines_list:
                class_name, left, top, right, bottom = line.split()
                # check if class is in the ignore list, if yes skip
                bbox = left + " " + top + " " + right + " " + bottom
                bounding_boxes.append({"class_name": class_name, "bbox": bbox, "used": False})
                # count that object
                if class_name in gt_counter_per_class:
                    gt_counter_per_class[class_name] += 1
                else:
                    # if class didn't exist yet
                    gt_counter_per_class[class_name] = 1

                if class_name not in already_seen_classes:
                    if class_name in counter_images_per_class:
                        counter_images_per_class[class_name] += 1
                    else:
                        # if class didn't exist yet
                        counter_images_per_class[class_name] = 1
                    already_seen_classes.append(class_name)

            # dump bounding_boxes into a ".json" file
            new_temp_file = os.path.join(temp_json_folder_path, file_id+"_ground_truth.json") #TEMP_FILES_PATH + "/" + file_id + "_ground_truth.json"
            gt_files.append(new_temp_file)
            with open(new_temp_file, 'w') as outfile:
                json.dump(bounding_boxes, outfile)

        gt_classes = list(gt_counter_per_class.keys())
        # let's sort the classes alphabetically
        gt_classes = sorted(gt_classes)
        n_classes = len(gt_classes)
        print(gt_classes, gt_counter_per_class)

        """Process prediction"""

        dr_files_list = sorted(glob(os.path.join(pred_folder_path, '*.txt')))

        for class_index, class_name in enumerate(gt_classes):
            bounding_boxes = []
            for txt_file in dr_files_list:
                # the first time it checks if all the corresponding ground-truth files exist
                file_id = txt_file.split(".txt", 1)[0]
                file_id = os.path.basename(os.path.normpath(file_id))
                temp_path = os.path.join(gt_folder_path, (file_id + ".txt"))
                if class_index == 0:
                    if not os.path.exists(temp_path):
                        error_msg = f"Error. File not found: {temp_path}\n"
                        print(error_msg)
                lines = read_txt_to_list(txt_file)
                for line in lines:
                    try:
                        tmp_class_name, confidence, left, top, right, bottom = line.split()
                    except ValueError:
                        error_msg = f"""Error: File {txt_file} in the wrong format.\n 
                                        Expected: <class_name> <confidence> <left> <top> <right> <bottom>\n 
                                        Received: {line} \n"""
                        print(error_msg)
                    if tmp_class_name == class_name:
                        # print("match")
                        bbox = left + " " + top + " " + right + " " + bottom
                        bounding_boxes.append({"confidence": confidence, "file_id": file_id, "bbox": bbox})
            # sort detection-results by decreasing confidence
            bounding_boxes.sort(key=lambda x: float(x['confidence']), reverse=True)
            with open(temp_json_folder_path + "/" + class_name + "_dr.json", 'w') as outfile:
                json.dump(bounding_boxes, outfile)

        """
         Calculate the AP for each class
        """
        sum_AP = 0.0
        ap_dictionary = {}
        # open file to store the output
        with open(output_files_path + "/output.txt", 'w') as output_file:
            output_file.write("# AP and precision/recall per class\n")
            count_true_positives = {}
            for class_index, class_name in enumerate(gt_classes):
                count_true_positives[class_name] = 0
                """
                 Load detection-results of that class
                """
                dr_file = temp_json_folder_path + "/" + class_name + "_dr.json"
                dr_data = json.load(open(dr_file))

                """
                 Assign detection-results to ground-truth objects
                """
                nd = len(dr_data)
                tp = [0] * nd  # creates an array of zeros of size nd
                fp = [0] * nd
                for idx, detection in enumerate(dr_data):
                    file_id = detection["file_id"]
                    gt_file = temp_json_folder_path + "/" + file_id + "_ground_truth.json"
                    ground_truth_data = json.load(open(gt_file))
                    ovmax = -1
                    gt_match = -1
                    # load detected object bounding-box
                    bb = [float(x) for x in detection["bbox"].split()]
                    for obj in ground_truth_data:
                        # look for a class_name match
                        if obj["class_name"] == class_name:
                            bbgt = [float(x) for x in obj["bbox"].split()]
                            bi = [max(bb[0], bbgt[0]), max(bb[1], bbgt[1]), min(bb[2], bbgt[2]), min(bb[3], bbgt[3])]
                            iw = bi[2] - bi[0] + 1
                            ih = bi[3] - bi[1] + 1
                            if iw > 0 and ih > 0:
                                # compute overlap (IoU) = area of intersection / area of union
                                ua = (bb[2] - bb[0] + 1) * (bb[3] - bb[1] + 1) + \
                                     (bbgt[2] - bbgt[0]+ 1) * (bbgt[3] - bbgt[1] + 1) - iw * ih
                                ov = iw * ih / ua
                                if ov > ovmax:
                                    ovmax = ov
                                    gt_match = obj

                    min_overlap = 0.5
                    if ovmax >= min_overlap:
                        # if "difficult" not in gt_match:
                        if not bool(gt_match["used"]):
                            # true positive
                            tp[idx] = 1
                            gt_match["used"] = True
                            count_true_positives[class_name] += 1
                            # update the ".json" file
                            with open(gt_file, 'w') as f:
                                f.write(json.dumps(ground_truth_data))
                        else:
                            # false positive (multiple detection)
                            fp[idx] = 1
                    else:
                        fp[idx] = 1


                # compute precision/recall
                cumsum = 0
                for idx, val in enumerate(fp):
                    fp[idx] += cumsum
                    cumsum += val
                print('fp ', cumsum)
                cumsum = 0
                for idx, val in enumerate(tp):
                    tp[idx] += cumsum
                    cumsum += val
                print('tp ', cumsum)
                rec = tp[:]
                for idx, val in enumerate(tp):
                    rec[idx] = float(tp[idx]) / gt_counter_per_class[class_name]
                print('recall ', cumsum)
                prec = tp[:]
                for idx, val in enumerate(tp):
                    prec[idx] = float(tp[idx]) / (fp[idx] + tp[idx])
                print('prec ', cumsum)

                ap, mrec, mprec = voc_ap(rec[:], prec[:])
                sum_AP += ap
                text = "{0:.2f}%".format(
                    ap * 100) + " = " + class_name + " AP "  # class_name + " AP = {0:.2f}%".format(ap*100)

                print(text)
                ap_dictionary[class_name] = ap

                n_images = counter_images_per_class[class_name]
                # lamr, mr, fppi = log_average_miss_rate(np.array(prec), np.array(rec), n_images)
                # lamr_dictionary[class_name] = lamr

                """
                 Draw plot
                """
                if True:
                    plt.plot(rec, prec, '-o')
                    # add a new penultimate point to the list (mrec[-2], 0.0)
                    # since the last line segment (and respective area) do not affect the AP value
                    area_under_curve_x = mrec[:-1] + [mrec[-2]] + [mrec[-1]]
                    area_under_curve_y = mprec[:-1] + [0.0] + [mprec[-1]]
                    plt.fill_between(area_under_curve_x, 0, area_under_curve_y, alpha=0.2, edgecolor='r')
                    # set window title
                    fig = plt.gcf()  # gcf - get current figure
                    fig.canvas.set_window_title('AP ' + class_name)
                    # set plot title
                    plt.title('class: ' + text)
                    # plt.suptitle('This is a somewhat long figure title', fontsize=16)
                    # set axis titles
                    plt.xlabel('Recall')
                    plt.ylabel('Precision')
                    # optional - set axes
                    axes = plt.gca()  # gca - get current axes
                    axes.set_xlim([0.0, 1.0])
                    axes.set_ylim([0.0, 1.05])  # .05 to give some extra space
                    # Alternative option -> wait for button to be pressed
                    # while not plt.waitforbuttonpress(): pass # wait for key display
                    # Alternative option -> normal display
                    plt.show()
                    # save the plot
                    # fig.savefig(output_files_path + "/classes/" + class_name + ".png")
                    # plt.cla()  # clear axes for next plot

            # if show_animation:
            #     cv2.destroyAllWindows()

            output_file.write("\n# mAP of all classes\n")
            mAP = sum_AP / n_classes
            text = "mAP = {0:.2f}%".format(mAP * 100)
            output_file.write(text + "\n")
            print(text)

        """
         Count total of detection-results
        """
        # iterate through all the files
        det_counter_per_class = {}
        for txt_file in dr_files_list:
            # get lines to list
            lines_list = read_txt_to_list(txt_file)
            for line in lines_list:
                class_name = line.split()[0]
                # check if class is in the ignore list, if yes skip
                # if class_name in args.ignore:
                #     continue
                # count that object
                if class_name in det_counter_per_class:
                    det_counter_per_class[class_name] += 1
                else:
                    # if class didn't exist yet
                    det_counter_per_class[class_name] = 1
        # print(det_counter_per_class)
        dr_classes = list(det_counter_per_class.keys())

        """
         Plot the total number of occurences of each class in the ground-truth
        """
        if True:
            window_title = "ground-truth-info"
            plot_title = "ground-truth\n"
            plot_title += "(" + str(len(ground_truth_files_list)) + " files and " + str(n_classes) + " classes)"
            x_label = "Number of objects per class"
            output_path = output_files_path + "/ground-truth-info.png"
            to_show = False
            plot_color = 'forestgreen'
            draw_plot_func(
                gt_counter_per_class,
                n_classes,
                window_title,
                plot_title,
                x_label,
                output_path,
                to_show,
                plot_color,
                '',
            )

        """
         Finish counting true positives
        """
        for class_name in dr_classes:
            # if class exists in detection-result but not in ground-truth then there are no true positives in that class
            if class_name not in gt_classes:
                count_true_positives[class_name] = 0
        # print(count_true_positives)

        """
         Plot the total number of occurences of each class in the "detection-results" folder
        """
        if True:
            window_title = "detection-results-info"
            # Plot title
            plot_title = "detection-results\n"
            plot_title += "(" + str(len(dr_files_list)) + " files and "
            count_non_zero_values_in_dictionary = sum(int(x) > 0 for x in list(det_counter_per_class.values()))
            plot_title += str(count_non_zero_values_in_dictionary) + " detected classes)"
            # end Plot title
            x_label = "Number of objects per class"
            output_path = output_files_path + "/detection-results-info.png"
            to_show = False
            plot_color = 'forestgreen'
            true_p_bar = count_true_positives
            draw_plot_func(
                det_counter_per_class,
                len(det_counter_per_class),
                window_title,
                plot_title,
                x_label,
                output_path,
                to_show,
                plot_color,
                true_p_bar
            )

        """
         Draw mAP plot (Show AP's of all classes in decreasing order)
        """
        if True:
            window_title = "mAP"
            plot_title = "mAP = {0:.2f}%".format(mAP * 100)
            x_label = "Average Precision"
            output_path = output_files_path + "/mAP.png"
            to_show = True
            plot_color = 'royalblue'
            draw_plot_func(
                ap_dictionary,
                n_classes,
                window_title,
                plot_title,
                x_label,
                output_path,
                to_show,
                plot_color,
                ""
            )

    def predict_raw(self, img_path):
        raw_img = cv2.imread(img_path)
        print('img shape: ', raw_img.shape)
        img = self.preprocess_img(raw_img)
        imgs = np.expand_dims(img, axis=0)
        return self.yolo_model.predict(imgs)

    def predict_nonms(self, img_path, iou_threshold=0.413, score_threshold=0.1):
        raw_img = cv2.imread(img_path)
        print('img shape: ', raw_img.shape)
        img = self.preprocess_img(raw_img)
        imgs = np.expand_dims(img, axis=0)
        yolov4_output = self.yolo_model.predict(imgs)
        output = yolov4_head(yolov4_output, self.num_classes, self.anchors, self.xyscale)
        pred_output = nms(output, self.img_size, self.num_classes, iou_threshold, score_threshold)
        pred_output = [p.numpy() for p in pred_output]
        detections = get_detection_data(img=raw_img,
                                        model_outputs=pred_output,
                                        class_names=self.class_names)
        draw_bbox(raw_img, detections, cmap=self.class_color, random_color=True)
        return detections