File size: 1,437 Bytes
33dbef6
29e4959
228c4b8
29e4959
33dbef6
 
 
 
 
 
 
 
f2a478c
 
6fd875d
f2a478c
 
33dbef6
228c4b8
 
 
 
a07ca53
f2a478c
 
93f97ce
f2a478c
 
 
228c4b8
f2a478c
9d3ef8a
228c4b8
 
 
 
9d3ef8a
 
29e4959
33dbef6
 
29e4959
8ac658c
f936c34
33dbef6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import streamlit as st  #Web App
from transformers import pipeline
from transformers import AutoTokenizer, AutoModelForSequenceClassification


#title
st.title("Sentiment Analysis")


def analyze(input, model):
    return "This is a sample output"


# load my fine-tuned model
fine_tuned = "jbraha/twitter-bert"


#text insert
input = st.text_area("insert text to be analyzed", value="Nice to see you today.", 
                     height=None, max_chars=None, key=None, help=None, on_change=None, 
                     args=None, kwargs=None, placeholder=None, disabled=False, 
                     label_visibility="visible")

option = st.selectbox(
    'Choose a transformer model:',
    ('Default', 'Fine-Tuned' , 'Roberta'))


if option == 'Fine-Tuned':
    model = AutoModelForSequenceClassification.from_pretrained(fine_tuned)
    tokenizer = AutoTokenizer.from_pretrained(fine_tuned)
    classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
elif option == 'Roberta':
    model = AutoModelForSequenceClassification.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
    tokenizer = AutoTokenizer.from_pretrained("cardiffnlp/twitter-roberta-base-sentiment")
    classifier = pipeline('sentiment-analysis', model=model, tokenizer=tokenizer)
else:
    classifier = pipeline('sentiment-analysis')


if st.button('Analyze'):
    st.write(classifier(input))
else:
    st.write('Excited to analyze!')