File size: 24,066 Bytes
afd17e4
af29e00
 
 
 
b0d0b61
af29e00
 
 
 
b0d0b61
af29e00
 
 
 
 
 
4aa9a25
c798217
8dce505
af29e00
 
 
afd17e4
af29e00
1af9d8b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af29e00
afd17e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b0d0b61
 
8dce505
 
 
 
 
 
 
 
 
 
a945d6e
8dce505
a945d6e
 
 
 
 
 
8dce505
 
 
afd17e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af29e00
4aa9a25
4617222
4aa9a25
 
 
 
4617222
4aa9a25
9d633d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af29e00
9d633d3
 
5e6df01
af29e00
 
 
 
 
 
 
 
 
 
 
 
 
9d633d3
 
afd17e4
9d633d3
 
 
 
afd17e4
9d633d3
 
af29e00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012a344
9d633d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
af29e00
9d633d3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1d2589
 
9d633d3
aabf6ef
48104ec
58240d2
 
 
 
86e8282
9d633d3
 
86e8282
 
aabf6ef
9d633d3
aabf6ef
 
9d633d3
 
 
 
 
 
aabf6ef
 
 
 
9d633d3
f1d2589
9d633d3
3260133
 
 
 
 
 
 
 
 
 
 
 
 
a945d6e
3260133
 
012a344
 
 
 
 
 
 
 
 
3260133
 
aabf6ef
3260133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
012a344
3260133
012a344
 
3e21e04
3dda9fb
32a0418
012a344
 
c2b3ca9
4aa9a25
771fc5c
 
 
 
 
4aa9a25
3e21e04
c798217
4aa9a25
 
c798217
4aa9a25
 
 
771fc5c
 
3260133
 
8dce505
 
60a8e8d
3260133
 
8dce505
4aa9a25
8dce505
 
 
 
 
86e8282
af29e00
f1d2589
af29e00
 
 
 
 
9d633d3
 
 
 
 
 
 
 
b0d0b61
9d633d3
 
 
b0d0b61
 
 
 
 
 
 
f1d2589
8dce505
 
aabf6ef
8dce505
 
 
 
 
 
 
 
 
 
 
 
9d633d3
b0d0b61
 
 
 
aabf6ef
b0d0b61
 
 
 
 
8dce505
b0d0b61
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683

import warnings
warnings.filterwarnings('ignore')

import subprocess, io, os, sys, time
# os.system("pip install gradio==3.38.0")
import gradio as gr

from loguru import logger


os.environ["CUDA_VISIBLE_DEVICES"] = "0"



import argparse
import copy
import re
import json
import base64

import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont, ImageOps

# Grounding DINO (the external dependency - shouldn't we use that instead?)
# import groundingdiny_py.groundingdino.datasets.transforms as T
# from groundingdiny_py.groundingdino.models import build_model
# from groundingdiny_py.groundingdino.util import box_ops
# from groundingdiny_py.groundingdino.util.slconfig import SLConfig
# from groundingdiny_py.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

# Grounding DINO (the version embedded in the repo - not sure we should keep this tbh, I would prefer to use a py lib)
if os.environ.get('IS_MY_DEBUG') is None:
    result = subprocess.run(['pip', 'install', '-e', 'GroundingDINO'], check=True)
    #print(f'pip install GroundingDINO = {result}')

#result = subprocess.run(['pip', 'list'], check=True)
#print(f'pip list = {result}')

sys.path.insert(0, './GroundingDINO')
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap

import cv2
import numpy as np
import matplotlib.pyplot as plt
from lama_cleaner.model_manager import ModelManager
from lama_cleaner.schema import Config as lama_Config

# segment anything
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator

# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download

from  utils import computer_info
# relate anything
from ram_utils import iou, sort_and_deduplicate, relation_classes, MLP, show_anns, ram_show_mask
from ram_train_eval import RamModel,RamPredictor
from mmengine.config import Config as mmengine_Config
from lama_cleaner.helper import (
    load_img,
    numpy_to_bytes,
    resize_max_size,
)

SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')

# Regex pattern to match data URI scheme
data_uri_pattern = re.compile(r'data:image/(png|jpeg|jpg|webp);base64,')

def readb64(b64):
    # Remove any data URI scheme prefix with regex
    b64 = data_uri_pattern.sub("", b64)
    # Decode and open the image with PIL
    img = Image.open(BytesIO(base64.b64decode(b64)))
    return img
    
# convert from CV2 image to base64 PNG
def writeb64(image):
    # this version is for PIL
    #buffered = BytesIO()
    #image.save(buffered, format="PNG")
    #b64image = base64.b64encode(buffered.getvalue())
    retval, buffer = cv2.imencode('.png', image)
    b64image = base64.b64encode(buffer)
    b64image_str = b64image.decode("utf-8")
    return b64image_str
    
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth' 
output_dir = "outputs"
device = 'cpu'

os.makedirs(output_dir, exist_ok=True)
groundingdino_model = None
sam_device = None
sam_model = None
sam_predictor = None
sam_mask_generator = None
sd_pipe = None
lama_cleaner_model= None
ram_model = None

def parse_label_and_score(string):
    match = re.match(r'(.+)\(([0-9\.]+)\)', string)
    if match:
        label, score = match.groups()
        return label, float(score)
    else:
        return string, float(0.5)

def get_sam_vit_h_4b8939():
    if not os.path.exists('./sam_vit_h_4b8939.pth'):
        logger.info(f"get sam_vit_h_4b8939.pth...")
        result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
        print(f'wget sam_vit_h_4b8939.pth result = {result}') 

def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
    args = SLConfig.fromfile(model_config_path) 
    model = build_model(args)
    args.device = device

    cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
    checkpoint = torch.load(cache_file, map_location=device)
    log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
    print("Model loaded from {} \n => {}".format(cache_file, log))
    _ = model.eval()
    return model    

def plot_boxes_to_image(image_pil, tgt):
    H, W = tgt["size"]
    boxes = tgt["boxes"]
    labels = tgt["labels"]
    assert len(boxes) == len(labels), "boxes and labels must have same length"

    draw = ImageDraw.Draw(image_pil)
    mask = Image.new("L", image_pil.size, 0)
    mask_draw = ImageDraw.Draw(mask)

    # draw boxes and masks
    for box, label in zip(boxes, labels):
        # from 0..1 to 0..W, 0..H
        box = box * torch.Tensor([W, H, W, H])
        # from xywh to xyxy
        box[:2] -= box[2:] / 2
        box[2:] += box[:2]
        # random color
        color = tuple(np.random.randint(0, 255, size=3).tolist())
        # draw
        x0, y0, x1, y1 = box
        x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)

        draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
        # draw.text((x0, y0), str(label), fill=color)

        font = ImageFont.load_default()
        if hasattr(font, "getbbox"):
            bbox = draw.textbbox((x0, y0), str(label), font)
        else:
            w, h = draw.textsize(str(label), font)
            bbox = (x0, y0, w + x0, y0 + h)
        # bbox = draw.textbbox((x0, y0), str(label))
        draw.rectangle(bbox, fill=color)

        try:
            font = os.path.join(cv2.__path__[0],'qt','fonts','DejaVuSans.ttf')
            font_size = 36
            new_font = ImageFont.truetype(font, font_size)

            draw.text((x0+2, y0+2), str(label), font=new_font, fill="white")
        except Exception as e:
            pass

        mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)


    return image_pil, mask

def load_image(image_path):
    # # load image
    if isinstance(image_path, PIL.Image.Image):
        image_pil = image_path.convert("RGB")
    else:
        image_pil = Image.open(image_path).convert("RGB")  # load image

    transform = T.Compose(
        [
            T.RandomResize([800], max_size=1333),
            T.ToTensor(),
            T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ]
    )
    image, _ = transform(image_pil, None)  # 3, h, w
    return image_pil, image

def load_model(model_config_path, model_checkpoint_path, device):
    args = SLConfig.fromfile(model_config_path)
    args.device = device
    model = build_model(args)
    checkpoint = torch.load(model_checkpoint_path, map_location=device) #"cpu")
    load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
    print(load_res)
    _ = model.eval()
    return model

def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
    caption = caption.lower()
    caption = caption.strip()
    if not caption.endswith("."):
        caption = caption + "."
    model = model.to(device)
    image = image.to(device)
    with torch.no_grad():
        outputs = model(image[None], captions=[caption])
    logits = outputs["pred_logits"].cpu().sigmoid()[0]  # (nq, 256)
    boxes = outputs["pred_boxes"].cpu()[0]  # (nq, 4)
    logits.shape[0]

    # filter output
    logits_filt = logits.clone()
    boxes_filt = boxes.clone()
    filt_mask = logits_filt.max(dim=1)[0] > box_threshold
    logits_filt = logits_filt[filt_mask]  # num_filt, 256
    boxes_filt = boxes_filt[filt_mask]  # num_filt, 4
    logits_filt.shape[0]

    # get phrase
    tokenlizer = model.tokenizer
    tokenized = tokenlizer(caption)
    # build pred
    pred_phrases = []
    for logit, box in zip(logits_filt, boxes_filt):
        pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
        if with_logits:
            pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
        else:
            pred_phrases.append(pred_phrase)

    return boxes_filt, pred_phrases

def show_mask(mask, ax, color):
    h, w = mask.shape[-2:]
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
    ax.imshow(mask_image)

def show_box(box, ax, label):
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2)) 
    ax.text(x0, y0, label)

def xywh_to_xyxy(box, sizeW, sizeH):
    if isinstance(box, list):
        box = torch.Tensor(box)
    box = box * torch.Tensor([sizeW, sizeH, sizeW, sizeH])
    box[:2] -= box[2:] / 2
    box[2:] += box[:2]
    box = box.numpy()
    return box

def mask_extend(img, box, extend_pixels=10, useRectangle=True):
    box[0] = int(box[0])
    box[1] = int(box[1])
    box[2] = int(box[2])
    box[3] = int(box[3])
    region = img.crop(tuple(box))
    new_width = box[2] - box[0] + 2*extend_pixels
    new_height = box[3] - box[1] + 2*extend_pixels

    region_BILINEAR = region.resize((int(new_width), int(new_height)))
    if useRectangle:
        region_draw = ImageDraw.Draw(region_BILINEAR)
        region_draw.rectangle((0, 0, new_width, new_height), fill=(255, 255, 255))    
    img.paste(region_BILINEAR, (int(box[0]-extend_pixels), int(box[1]-extend_pixels)))
    return img

def mix_masks(imgs):
    re_img =  1 - np.asarray(imgs[0].convert("1"))
    for i in range(len(imgs)-1):
        re_img = np.multiply(re_img, 1 - np.asarray(imgs[i+1].convert("1")))
    re_img =  1 - re_img
    return  Image.fromarray(np.uint8(255*re_img))

def set_device():
    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    print(f'device={device}')

def load_groundingdino_model():
    # initialize groundingdino model
    global groundingdino_model
    logger.info(f"initialize groundingdino model...")
    groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)

def load_sam_model():
    # initialize SAM
    global sam_model, sam_predictor, sam_mask_generator, sam_device
    logger.info(f"initialize SAM model...")
    sam_device = device
    sam_model = build_sam(checkpoint=sam_checkpoint).to(sam_device)
    sam_predictor = SamPredictor(sam_model)
    sam_mask_generator = SamAutomaticMaskGenerator(sam_model)

def load_sd_model():
    # initialize stable-diffusion-inpainting
    global sd_pipe
    logger.info(f"initialize stable-diffusion-inpainting...")
    sd_pipe = None
    if os.environ.get('IS_MY_DEBUG') is None:
        sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
                "runwayml/stable-diffusion-inpainting", 
                # revision="fp16",
                # "stabilityai/stable-diffusion-2-inpainting",
                torch_dtype=torch.float16,
        )
        sd_pipe = sd_pipe.to(device)

def load_lama_cleaner_model():
    # initialize lama_cleaner
    global lama_cleaner_model
    logger.info(f"initialize lama_cleaner...")

    lama_cleaner_model = ModelManager(
            name='lama',
            device='cpu', # device,
        )

def lama_cleaner_process(image, mask, cleaner_size_limit=1080):
    ori_image = image
    if mask.shape[0] == image.shape[1] and mask.shape[1] == image.shape[0] and mask.shape[0] != mask.shape[1]:
        # rotate image
        ori_image = np.transpose(image[::-1, ...][:, ::-1], axes=(1, 0, 2))[::-1, ...]
        image = ori_image
    
    original_shape = ori_image.shape
    interpolation = cv2.INTER_CUBIC
    
    size_limit = cleaner_size_limit
    if size_limit == -1:
        size_limit = max(image.shape)
    else:
        size_limit = int(size_limit)

    config = lama_Config(
        ldm_steps=25,
        ldm_sampler='plms',
        zits_wireframe=True,
        hd_strategy='Original',
        hd_strategy_crop_margin=196,
        hd_strategy_crop_trigger_size=1280,
        hd_strategy_resize_limit=2048,
        prompt='',
        use_croper=False,
        croper_x=0,
        croper_y=0,
        croper_height=512,
        croper_width=512,
        sd_mask_blur=5,
        sd_strength=0.75,
        sd_steps=50,
        sd_guidance_scale=7.5,
        sd_sampler='ddim',
        sd_seed=42,
        cv2_flag='INPAINT_NS',
        cv2_radius=5,
    )
    
    if config.sd_seed == -1:
        config.sd_seed = random.randint(1, 999999999)

    # logger.info(f"Origin image shape_0_: {original_shape} / {size_limit}")
    image = resize_max_size(image, size_limit=size_limit, interpolation=interpolation)
    # logger.info(f"Resized image shape_1_: {image.shape}")
    
    # logger.info(f"mask image shape_0_: {mask.shape} / {type(mask)}")
    mask = resize_max_size(mask, size_limit=size_limit, interpolation=interpolation)
    # logger.info(f"mask image shape_1_: {mask.shape} / {type(mask)}")

    res_np_img = lama_cleaner_model(image, mask, config)
    torch.cuda.empty_cache()
  
    image = Image.open(io.BytesIO(numpy_to_bytes(res_np_img, 'png')))
    return  image

class Ram_Predictor(RamPredictor):
    def __init__(self, config, device='cpu'):
        self.config = config
        self.device = torch.device(device)
        self._build_model()

    def _build_model(self):
        self.model = RamModel(**self.config.model).to(self.device)
        if self.config.load_from is not None:
            self.model.load_state_dict(torch.load(self.config.load_from, map_location=self.device))
        self.model.train()

def load_ram_model():
    # load ram model
    global ram_model
    model_path = "./checkpoints/ram_epoch12.pth"
    ram_config = dict(
        model=dict(
            pretrained_model_name_or_path='bert-base-uncased',
            load_pretrained_weights=False,
            num_transformer_layer=2,
            input_feature_size=256,
            output_feature_size=768,
            cls_feature_size=512,
            num_relation_classes=56,
            pred_type='attention',
            loss_type='multi_label_ce',
        ),
        load_from=model_path,
    )
    ram_config = mmengine_Config(ram_config)
    ram_model = Ram_Predictor(ram_config, device)

# visualization
def draw_selected_mask(mask, draw):
    color = (255, 0, 0, 153)
    nonzero_coords = np.transpose(np.nonzero(mask))
    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)

def draw_object_mask(mask, draw):
    color = (0, 0, 255, 153)
    nonzero_coords = np.transpose(np.nonzero(mask))
    for coord in nonzero_coords:
        draw.point(coord[::-1], fill=color)

def create_title_image(word1, word2, word3, width, font_path='./assets/OpenSans-Bold.ttf'):
    # Define the colors to use for each word
    color_red = (255, 0, 0)
    color_black = (0, 0, 0)
    color_blue = (0, 0, 255)

    # Define the initial font size and spacing between words
    font_size = 40

    # Create a new image with the specified width and white background
    image = Image.new('RGB', (width, 60), (255, 255, 255))

    try:
        # Load the specified font
        font = ImageFont.truetype(font_path, font_size)

        # Keep increasing the font size until all words fit within the desired width
        while True:
            # Create a draw object for the image
            draw = ImageDraw.Draw(image)
            
            word_spacing = font_size / 2
            # Draw each word in the appropriate color
            x_offset = word_spacing
            draw.text((x_offset, 0), word1, color_red, font=font)
            x_offset += font.getsize(word1)[0] + word_spacing
            draw.text((x_offset, 0), word2, color_black, font=font)
            x_offset += font.getsize(word2)[0] + word_spacing
            draw.text((x_offset, 0), word3, color_blue, font=font)
            
            word_sizes = [font.getsize(word) for word in [word1, word2, word3]]
            total_width = sum([size[0] for size in word_sizes]) + word_spacing * 3

            # Stop increasing font size if the image is within the desired width
            if total_width <= width:
                break
                
            # Increase font size and reset the draw object
            font_size -= 1
            image = Image.new('RGB', (width, 50), (255, 255, 255))
            font = ImageFont.truetype(font_path, font_size)
            draw = None
    except Exception as e:
        pass

    return image

def concatenate_images_vertical(image1, image2):
    # Get the dimensions of the two images
    width1, height1 = image1.size
    width2, height2 = image2.size

    # Create a new image with the combined height and the maximum width
    new_image = Image.new('RGBA', (max(width1, width2), height1 + height2))

    # Paste the first image at the top of the new image
    new_image.paste(image1, (0, 0))

    # Paste the second image below the first image
    new_image.paste(image2, (0, height1))

    return new_image

mask_source_draw = "draw a mask on input image"
mask_source_segment = "type what to detect below"

def run_anything_task(secret_token, input_image_b64, text_prompt, box_threshold, text_threshold, 
            iou_threshold, cleaner_size_limit=1080):
    if secret_token != SECRET_TOKEN:
        raise gr.Error(
            f'Invalid secret token. Please fork the original space if you want to use it for yourself.')

    task_type = "segment"             

    text_prompt = text_prompt.strip()
    if not ((task_type == 'inpainting' or task_type == 'remove') and mask_source_radio == mask_source_draw):
        if text_prompt == '':
            return ""

    if input_image_b64 is None:
            return ""

    file_temp = int(time.time())

    output_images = []

    # load image
    input_image = readb64(input_image_b64)
    
    image_pil, image = load_image(input_image.convert("RGB"))
 
    size = image_pil.size
    
    # run grounding dino model
    groundingdino_device = 'cpu'
    if device != 'cpu':
        try:
            from groundingdino import _C
            groundingdino_device = 'cuda:0'
        except:
            warnings.warn("Failed to load custom C++ ops. Running on CPU mode Only in groundingdino!")

    boxes_filt, pred_phrases = get_grounding_output(
        groundingdino_model, image, text_prompt, box_threshold, text_threshold, device=groundingdino_device
    )
    if boxes_filt.size(0) == 0:
        logger.info(f'run_anything_task_[{file_temp}]_{task_type}_[{text_prompt}]_1_[No objects detected, please try others.]_')
        return []
    boxes_filt_ori = copy.deepcopy(boxes_filt)


    # print bounding boxes only           
    #pred_dict = {
    #    "boxes": boxes_filt,
    #    "size": [size[1], size[0]],  # H,W
    #    "labels": pred_phrases,
    #}
    # image_with_box = plot_boxes_to_image(copy.deepcopy(image_pil), pred_dict)[0]
    # output_images.append(image_with_box)

    # now we generate the segmentation
    image = np.array(input_image)
    sam_predictor.set_image(image)

    H, W = size[1], size[0]
    for i in range(boxes_filt.size(0)):
        boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
        boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
        boxes_filt[i][2:] += boxes_filt[i][:2]

    boxes_filt = boxes_filt.to(sam_device)
    transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])

    masks, _, _, _ = sam_predictor.predict_torch(
        point_coords = None,
        point_labels = None,
        boxes = transformed_boxes,
        multimask_output = False,
    )
    # masks: [9, 1, 512, 512]
    assert sam_checkpoint, 'sam_checkpoint is not found!'
    # draw output image
    plt.figure(figsize=(10, 10))
    # we don't draw the background image, we only want the mask
    # plt.imshow(image)

    results = []

    for i, mask in enumerate(masks):
        color = np.concatenate([np.random.random(3), np.array([1])], axis=0)
        # color = np.array([30/255, 144/255, 255/255, 0.6])
        show_mask(mask.cpu().numpy(), plt.gca(), color)
        print("pred_phrases[i] = " + str(pred_phrases[i]))
        label, score = parse_label_and_score(pred_phrases[i])
        print("id: " + str(i))
        print("box: " + str(boxes_filt[i].tolist()))
        print("label: " + label)
        print("score: " + str(score))
        print("color: " + str(color.tolist()))
        item = {
            "id": i,
            "box": boxes_filt[i].tolist(),
            "label": label,
            "score": score,
            "color": color.tolist(),
        }
        results.append(item)
        
    #for box, label in zip(boxes_filt, pred_phrases):
    #    show_box(box.cpu().numpy(), plt.gca(), label)
    plt.axis('off')
    image_path = os.path.join(output_dir, f"grounding_seg_output_{file_temp}.png")

    # do we really need to write to the disk to get an image? seems inneficient
    plt.savefig(image_path, bbox_inches="tight", pad_inches=0)
    segment_image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
    os.remove(image_path)
    # output_images.append(segment_image_result)

    response_object = {
        "data": results,
        "bitmap": writeb64(segment_image_result) # save as PNG base64
    }
    return json.dumps(response_object)

if __name__ == "__main__":
    parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
    parser.add_argument("--debug", action="store_true", help="using debug mode")
    parser.add_argument("--share", action="store_true", help="share the app")
    args = parser.parse_args()
    print(f'args = {args}')

    set_device()
    get_sam_vit_h_4b8939()
    load_groundingdino_model()
    load_sam_model()
    load_sd_model()
    load_lama_cleaner_model()
    load_ram_model()

    # os.system("pip list")

    block = gr.Blocks().queue()
    with block:
        gr.HTML("""
            <div style="z-index: 100; position: fixed; top: 0px; right: 0px; left: 0px; bottom: 0px; width: 100%; height: 100%; background: white; display: flex; align-items: center; justify-content: center; color: black;">
            <div style="text-align: center; color: black;">
            <p style="color: black;">This space is a REST API to programmatically segment an image.</p>
            <p style="color: black;">Interested in using it? Please use the <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything" target="_blank">original space</a>, thank you!</p>
            </div>
            </div>""")

        secret_token = gr.Textbox()
        text_prompt = gr.Textbox()
        input_image_b64 = gr.Textbox()    
        text_prompt = gr.Textbox(label="Detection Prompt[To detect multiple objects, seperating each name with '.', like this: cat . dog . chair ]", placeholder="Cannot be empty")                                                
        run_button = gr.Button(label="Run", visible=True)
        with gr.Accordion("Advanced options", open=False) as advanced_options:
            box_threshold = gr.Slider(
                label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
            )
            text_threshold = gr.Slider(
                label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
            )
            iou_threshold = gr.Slider(
                        label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.001
                )                    

            run_button.click(
                fn=run_anything_task,
                inputs=[
                    secret_token,
                    input_image_b64,
                    text_prompt,
                    box_threshold,
                    text_threshold,
                    iou_threshold
                ],
                outputs=gr.Textbox()
            )

    block.queue(max_size=20).launch(server_name='0.0.0.0', debug=args.debug, share=args.share)