File size: 5,024 Bytes
65fd06d
 
 
 
 
 
 
 
7db3ca3
65fd06d
 
 
 
 
 
7db3ca3
 
65fd06d
7db3ca3
 
65fd06d
7db3ca3
 
 
 
 
 
65fd06d
7db3ca3
 
65fd06d
 
7f11b82
65fd06d
 
 
 
 
 
 
 
 
 
 
 
7db3ca3
9269fd4
 
65fd06d
 
 
 
 
7db3ca3
 
 
 
 
 
 
 
65fd06d
108abb9
16c8f31
9269fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65fd06d
9269fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108abb9
9269fd4
65fd06d
 
 
 
8790f79
 
 
65fd06d
 
 
 
 
 
 
 
 
7db3ca3
 
65fd06d
 
 
 
8790f79
 
 
65fd06d
 
 
 
 
 
9269fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8790f79
7db3ca3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
#!/usr/bin/env python

import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))

device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
    unet = UNet2DConditionModel.from_pretrained(
        "latent-consistency/lcm-ssd-1b",
        torch_dtype=torch.float16,
        variant="fp16"
    )

    pipe = DiffusionPipeline.from_pretrained(
        "segmind/SSD-1B",
        unet=unet,
        torch_dtype=torch.float16,
        variant="fp16"
    )

    pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
    pipe.to(device)
else:
    pipe = None
    
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    return seed


def generate(prompt: str,
             negative_prompt: str = '',
             use_negative_prompt: bool = False,
             seed: int = 0,
             width: int = 1024,
             height: int = 1024,
             guidance_scale: float = 1.0,
             num_inference_steps: int = 6) -> PIL.Image.Image:

    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None  # type: ignore

    return pipe(prompt=prompt,
                negative_prompt=negative_prompt,
                width=width,
                height=height,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator,
                output_type='pil').images[0]

with gr.Blocks() as demo:
    with gr.Box():
        with gr.Row():
            prompt = gr.Text(
                label='Prompt',
                show_label=False,
                max_lines=1,
                placeholder='Enter your prompt',
                container=False,
            )
            run_button = gr.Button('Run', scale=0)
        result = gr.Image(label='Result', show_label=False)
        with gr.Accordion('Advanced options', open=False):
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label='Use negative prompt',
                                                  value=False)
            negative_prompt = gr.Text(
                label='Negative prompt',
                max_lines=1,
                placeholder='Enter a negative prompt',
                visible=False,
            )

            seed = gr.Slider(label='Seed',
                             minimum=0,
                             maximum=MAX_SEED,
                             step=1,
                             value=0)
            randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
            with gr.Row():
                width = gr.Slider(
                    label='Width',
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label='Height',
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
            with gr.Row():
                guidance_scale = gr.Slider(
                    label='Guidance scale',
                    minimum=1,
                    maximum=20,
                    step=0.1,
                    value=5.0)
                num_inference_steps = gr.Slider(
                    label='Number of inference steps',
                    minimum=2,
                    maximum=50,
                    step=1,
                    value=6)

    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        queue=False,
        api_name=False,
    )

    inputs = [
        prompt,
        negative_prompt,
        use_negative_prompt,
        seed,
        width,
        height,
        guidance_scale,
        num_inference_steps,
    ]
    prompt.submit(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name='run',
    )
    negative_prompt.submit(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name=False,
    )
    run_button.click(
        fn=randomize_seed_fn,
        inputs=[seed, randomize_seed],
        outputs=seed,
        queue=False,
        api_name=False,
    ).then(
        fn=generate,
        inputs=inputs,
        outputs=result,
        api_name=False,
    )

demo.queue(max_size=6).launch()