File size: 7,576 Bytes
1ee3bf0
c644570
1ee3bf0
c644570
c4e3a54
1ee3bf0
 
33469f8
5d133e3
1ee3bf0
 
 
 
 
 
 
 
 
33469f8
cad6ebe
 
a750c0e
c4e3a54
 
a750c0e
c4e3a54
a750c0e
c4e3a54
 
a750c0e
6e5a323
3c77757
 
 
 
33469f8
3c77757
33469f8
1ee3bf0
 
 
33469f8
1ee3bf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee3bf0
 
33469f8
1ee3bf0
 
33469f8
1ee3bf0
b2c85ec
33469f8
 
 
 
 
 
 
 
 
3e48ac3
33469f8
 
 
 
3c77757
1ee3bf0
b2c85ec
33469f8
 
 
 
1ee3bf0
 
b2c85ec
 
33469f8
1ee3bf0
33469f8
737d099
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33469f8
 
 
 
 
 
 
 
 
1ee3bf0
b2c85ec
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
import gradio as gr
import torch

from diffusers import AutoPipelineForInpainting, UNet2DConditionModel
import diffusers
from share_btn import community_icon_html, loading_icon_html, share_js

device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = AutoPipelineForInpainting.from_pretrained("diffusers/stable-diffusion-xl-1.0-inpainting-0.1", torch_dtype=torch.float16, variant="fp16").to(device)

def read_content(file_path: str) -> str:
    """read the content of target file
    """
    with open(file_path, 'r', encoding='utf-8') as f:
        content = f.read()

    return content

def predict(dict, prompt="", negative_prompt="", guidance_scale=7.5, steps=20, strength=1.0, scheduler="EulerDiscreteScheduler"):
    if negative_prompt == "":
        negative_prompt = None
    scheduler_class_name = scheduler.split("-")[0]

    add_kwargs = {}
    if len(scheduler.split("-")) > 1:
        add_kwargs["use_karras"] = True
    if len(scheduler.split("-")) > 2:
        add_kwargs["algorithm_type"] = "sde-dpmsolver++"

    scheduler = getattr(diffusers, scheduler_class_name)
    pipe.scheduler = scheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler", **add_kwargs)
    
    init_image = dict["image"].convert("RGB").resize((1024, 1024))
    mask = dict["mask"].convert("RGB").resize((1024, 1024))
    
    output = pipe(prompt = prompt, negative_prompt=negative_prompt, image=init_image, mask_image=mask, guidance_scale=guidance_scale, num_inference_steps=int(steps), strength=strength)
    
    return output.images[0], gr.update(visible=True)


css = '''
.gradio-container{max-width: 1100px !important}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
    from {
        transform: rotate(0deg);
    }
    to {
        transform: rotate(360deg);
    }
}
#share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;}
div#share-btn-container > div {flex-direction: row;background: black;align-items: center}
#share-btn-container:hover {background-color: #060606}
#share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;}
#share-btn * {all: unset}
#share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;}
#share-btn-container .wrap {display: none !important}
#share-btn-container.hidden {display: none!important}
#prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
    border-top-left-radius: 0px;}
#prompt-container{margin-top:-18px;}
#prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0}
#image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px}
'''

image_blocks = gr.Blocks(css=css, elem_id="total-container")
with image_blocks as demo:
    gr.HTML(read_content("header.html"))
    with gr.Row():
                with gr.Column():
                    image = gr.Image(source='upload', tool='sketch', elem_id="image_upload", type="pil", label="Upload",height=400)
                    with gr.Row(elem_id="prompt-container", mobile_collapse=False, equal_height=True):
                        with gr.Row():
                            prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
                            btn = gr.Button("Inpaint!", elem_id="run_button")
                    
                    with gr.Accordion(label="Advanced Settings", open=False):
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            guidance_scale = gr.Number(value=7.5, minimum=1.0, maximum=20.0, step=0.1, label="guidance_scale")
                            steps = gr.Number(value=20, minimum=10, maximum=30, step=1, label="steps")
                            strength = gr.Number(value=0.99, minimum=0.01, maximum=1.0, step=0.01, label="strength")
                            negative_prompt = gr.Textbox(label="negative_prompt", placeholder="Your negative prompt", info="what you don't want to see in the image")
                        with gr.Row(mobile_collapse=False, equal_height=True):
                            schedulers = ["DEISMultistepScheduler", "HeunDiscreteScheduler", "EulerDiscreteScheduler", "DPMSolverMultistepScheduler", "DPMSolverMultistepScheduler-Karras", "DPMSolverMultistepScheduler-Karras-SDE"]
                            scheduler = gr.Dropdown(label="Schedulers", choices=schedulers, value="EulerDiscreteScheduler")
                        
                with gr.Column():
                    image_out = gr.Image(label="Output", elem_id="output-img", height=400)
                    with gr.Group(elem_id="share-btn-container", visible=False) as share_btn_container:
                        community_icon = gr.HTML(community_icon_html)
                        loading_icon = gr.HTML(loading_icon_html)
                        share_button = gr.Button("Share to community", elem_id="share-btn",visible=True)
            

    btn.click(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container], api_name='run')
    prompt.submit(fn=predict, inputs=[image, prompt, negative_prompt, guidance_scale, steps, strength, scheduler], outputs=[image_out, share_btn_container])
    share_button.click(None, [], [], _js=share_js)

    gr.Examples(
                examples=[
                    ["./imgs/aaa (8).png"],
                    ["./imgs/download (1).jpeg"],
                    ["./imgs/0_oE0mLhfhtS_3Nfm2.png"],
                    ["./imgs/02_HubertyBlog-1-1024x1024.jpg"],
                    ["./imgs/jdn_jacques_de_nuce-1024x1024.jpg"],
                    ["./imgs/c4ca473acde04280d44128ad8ee09e8a.jpg"],
                    ["./imgs/canam-electric-motorcycles-scaled.jpg"],
                    ["./imgs/e8717ce80b394d1b9a610d04a1decd3a.jpeg"],
                    ["./imgs/Nature___Mountains_Big_Mountain_018453_31.jpg"],
                    ["./imgs/Multible-sharing-room_ccexpress-2-1024x1024.jpeg"],
                ],
                fn=predict,
                inputs=[image],
                cache_examples=False,
    )
    gr.HTML(
        """
            <div class="footer">
                <p>Model by <a href="https://huggingface.co/diffusers" style="text-decoration: underline;" target="_blank">Diffusers</a> - Gradio Demo by 🤗 Hugging Face
                </p>
            </div>
        """
    )

image_blocks.queue(max_size=25).launch()