File size: 6,965 Bytes
65fd06d 7db3ca3 65fd06d 7f11b82 65fd06d 7f11b82 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7f11b82 65fd06d 7db3ca3 88cc598 0810225 88cc598 65fd06d 7db3ca3 65fd06d 7f11b82 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 7f11b82 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 65fd06d 7db3ca3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
#!/usr/bin/env python
import os
import random
import gradio as gr
import numpy as np
import PIL.Image
import torch
from diffusers import DiffusionPipeline, UNet2DConditionModel, LCMScheduler
DESCRIPTION = 'This space is an API service meant to be used by VideoChain and VideoQuest.\nWant to use this space for yourself? Please use the original code: [https://huggingface.co/spaces/hysts/SD-XL](https://huggingface.co/spaces/hysts/SD-XL)'
if not torch.cuda.is_available():
DESCRIPTION += '\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>'
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = int(os.getenv('MAX_IMAGE_SIZE', '1024'))
SECRET_TOKEN = os.getenv('SECRET_TOKEN', 'default_secret')
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
if torch.cuda.is_available():
unet = UNet2DConditionModel.from_pretrained(
"latent-consistency/lcm-ssd-1b",
torch_dtype=torch.float16,
variant="fp16"
)
pipe = DiffusionPipeline.from_pretrained(
"segmind/SSD-1B",
unet=unet,
torch_dtype=torch.float16,
variant="fp16"
)
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
pipe.to(device)
else:
pipe = None
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def generate(prompt: str,
negative_prompt: str = '',
prompt_2: str = '',
negative_prompt_2: str = '',
use_negative_prompt: bool = False,
use_prompt_2: bool = False,
use_negative_prompt_2: bool = False,
seed: int = 0,
width: int = 1024,
height: int = 1024,
guidance_scale: float = 1.0,
num_inference_steps: int = 4,
secret_token: str = '') -> PIL.Image.Image:
if secret_token != SECRET_TOKEN:
raise gr.Error(
f'Invalid secret token. Please fork the original space if you want to use it for yourself.')
generator = torch.Generator().manual_seed(seed)
if not use_negative_prompt:
negative_prompt = None # type: ignore
if not use_prompt_2:
prompt_2 = None # type: ignore
if not use_negative_prompt_2:
negative_prompt_2 = None # type: ignore
return pipe(prompt=prompt,
negative_prompt=negative_prompt,
prompt_2=prompt_2,
negative_prompt_2=negative_prompt_2,
width=width,
height=height,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
generator=generator,
output_type='pil').images[0]
with gr.Blocks(css='style.css') as demo:
gr.Markdown(DESCRIPTION)
with gr.Box():
with gr.Row():
secret_token = gr.Text(
label='Secret Token',
max_lines=1,
placeholder='Enter your secret token',
)
prompt = gr.Text(
label='Prompt',
show_label=False,
max_lines=1,
placeholder='Enter your prompt',
container=False,
)
run_button = gr.Button('Run', scale=0)
result = gr.Image(label='Result', show_label=False)
with gr.Accordion('Advanced options', open=False):
with gr.Row():
use_negative_prompt = gr.Checkbox(label='Use negative prompt',
value=False)
use_prompt_2 = gr.Checkbox(label='Use prompt 2', value=False)
use_negative_prompt_2 = gr.Checkbox(
label='Use negative prompt 2', value=False)
negative_prompt = gr.Text(
label='Negative prompt',
max_lines=1,
placeholder='Enter a negative prompt',
visible=False,
)
prompt_2 = gr.Text(
label='Prompt 2',
max_lines=1,
placeholder='Enter your prompt',
visible=False,
)
negative_prompt_2 = gr.Text(
label='Negative prompt 2',
max_lines=1,
placeholder='Enter a negative prompt',
visible=False,
)
seed = gr.Slider(label='Seed',
minimum=0,
maximum=MAX_SEED,
step=1,
value=0)
randomize_seed = gr.Checkbox(label='Randomize seed', value=True)
with gr.Row():
width = gr.Slider(
label='Width',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label='Height',
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
guidance_scale = gr.Slider(
label='Guidance scale',
minimum=1,
maximum=20,
step=0.1,
value=1.0)
num_inference_steps = gr.Slider(
label='Number of inference steps',
minimum=2,
maximum=8,
step=1,
value=4)
use_negative_prompt.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt,
outputs=negative_prompt
)
use_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_prompt_2,
outputs=prompt_2
)
use_negative_prompt_2.change(
fn=lambda x: gr.update(visible=x),
inputs=use_negative_prompt_2,
outputs=negative_prompt_2
)
inputs = [
prompt,
negative_prompt,
prompt_2,
negative_prompt_2,
use_negative_prompt,
use_prompt_2,
use_negative_prompt_2,
seed,
width,
height,
guidance_scale,
num_inference_steps,
secret_token,
]
prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed
).then(
fn=generate,
inputs=inputs,
outputs=result,
api_name='run',
)
negative_prompt.submit(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed
).then(
fn=generate,
inputs=inputs,
outputs=result
)
run_button.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=seed
).then(
fn=generate,
inputs=inputs,
outputs=result
)
demo.queue(max_size=6).launch() |