Spaces:
Paused
Paused
File size: 5,431 Bytes
b888bcf 6a4b741 b888bcf 6a4b741 b888bcf 6a4b741 75a89e7 b888bcf 6a4b741 b888bcf b626f76 6a4b741 f1f7ebd 75a89e7 6a4b741 b888bcf 6a4b741 b626f76 b888bcf 6a4b741 b888bcf 6a4b741 46b8e8d 6a4b741 b888bcf 6a4b741 b888bcf 6a4b741 bf6d614 44f2b12 6a4b741 b888bcf e5502cf 57558ed 6a4b741 b888bcf 6a4b741 b888bcf 6a4b741 b888bcf a7104ac 6a4b741 b888bcf 6a4b741 a7104ac 6a4b741 b888bcf 6a4b741 b888bcf 6a4b741 b888bcf 6a4b741 b888bcf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import gradio as gr
import torch
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
from huggingface_hub import hf_hub_download
import lora
from time import sleep
import copy
import json
with open("sdxl_loras.json", "r") as file:
sdxl_loras = [
(
item["image"],
item["title"],
item["repo"],
item["trigger_word"],
item["weights"],
item["is_compatible"],
)
for item in json.load(file)
]
saved_names = [
hf_hub_download(repo_id, filename) for _, _, repo_id, _, filename, _ in sdxl_loras
]
device = "cuda" #replace this to `mps` if on a MacOS Silicon
def update_selection(selected_state: gr.SelectData):
lora_repo = sdxl_loras[selected_state.index][2]
instance_prompt = sdxl_loras[selected_state.index][3]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})"
return updated_text, instance_prompt, selected_state
vae = AutoencoderKL.from_pretrained(
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
)
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
).to("cpu")
original_pipe = copy.deepcopy(pipe)
pipe.to(device)
last_lora = ""
last_merged = False
def run_lora(prompt, negative, weight, selected_state):
global last_lora, last_merged, pipe
if not selected_state:
raise gr.Error("You must select a LoRA")
repo_name = sdxl_loras[selected_state.index][2]
weight_name = sdxl_loras[selected_state.index][4]
full_path_lora = saved_names[selected_state.index]
cross_attention_kwargs = None
if last_lora != repo_name:
if last_merged:
pipe = copy.deepcopy(original_pipe)
pipe.to(device)
else:
pipe.unload_lora_weights()
is_compatible = sdxl_loras[selected_state.index][5]
if is_compatible:
pipe.load_lora_weights(full_path_lora)
cross_attention_kwargs = {"scale": weight}
else:
for weights_file in [full_path_lora]:
if ";" in weights_file:
weights_file, multiplier = weights_file.split(";")
multiplier = float(weight)
else:
multiplier = 1.0
multiplier = torch.tensor([multiplier], dtype=torch.float16, device=device)
lora_model, weights_sd = lora.create_network_from_weights(
multiplier,
full_path_lora,
pipe.vae,
pipe.text_encoder,
pipe.unet,
for_inference=True,
)
lora_model.apply_to(pipe.text_encoder, pipe.unet)
lora_model = lora_model.to("cuda").to(dtype=torch.float16)
last_merged = True
image = pipe(
prompt=prompt,
negative_prompt=negative,
num_inference_steps=20,
guidance_scale=7.5,
cross_attention_kwargs=cross_attention_kwargs,
).images[0]
last_lora = repo_name
return image
css = """
#title{text-align: center;margin-bottom: 0.5em}
#title h1{font-size: 3em}
#prompt textarea{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;}
#run_button{position:absolute;margin-top: 38px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px;
border-top-left-radius: 0px;}
#gallery{display:flex}
#gallery .grid-wrap{min-height: 100%;}
"""
with gr.Blocks(css=css) as demo:
title = gr.Markdown("# LoRA the Explorer π", elem_id="title")
with gr.Row():
gallery = gr.Gallery(
value=[(a, b) for a, b, _, _, _, _ in sdxl_loras],
label="SDXL LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery",
)
with gr.Column():
prompt_title = gr.Markdown(
value="### Click on a LoRA in the gallery to select it", visible=True
)
with gr.Row():
prompt = gr.Textbox(label="Prompt", elem_id="prompt")
button = gr.Button("Run", elem_id="run_button")
result = gr.Image(interactive=False, label="result")
with gr.Accordion("Advanced options", open=False):
negative = gr.Textbox(label="Negative Prompt")
weight = gr.Slider(0, 1, value=1, step=0.1, label="LoRA weight")
with gr.Column():
gr.Markdown("Use it with:")
with gr.Row():
with gr.Accordion("𧨠diffusers", open=False):
gr.Markdown("")
with gr.Accordion("ComfyUI", open=False):
gr.Markdown("")
with gr.Accordion("Invoke AI", open=False):
gr.Markdown("")
with gr.Accordion("SD.Next (AUTO1111 fork)", open=False):
gr.Markdown("")
selected_state = gr.State()
gallery.select(
update_selection,
outputs=[prompt_title, prompt, selected_state],
queue=False,
show_progress=False,
)
prompt.submit(
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
)
button.click(
fn=run_lora, inputs=[prompt, negative, weight, selected_state], outputs=result
)
demo.launch()
|