Spaces:
Running
Running
File size: 82,053 Bytes
60e3020 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 |
/**
* @fileoverview A class to manage state of generating a code path.
* @author Toru Nagashima
*/
"use strict";
//------------------------------------------------------------------------------
// Requirements
//------------------------------------------------------------------------------
const CodePathSegment = require("./code-path-segment"),
ForkContext = require("./fork-context");
//-----------------------------------------------------------------------------
// Contexts
//-----------------------------------------------------------------------------
/**
* Represents the context in which a `break` statement can be used.
*
* A `break` statement without a label is only valid in a few places in
* JavaScript: any type of loop or a `switch` statement. Otherwise, `break`
* without a label causes a syntax error. For these contexts, `breakable` is
* set to `true` to indicate that a `break` without a label is valid.
*
* However, a `break` statement with a label is also valid inside of a labeled
* statement. For example, this is valid:
*
* a : {
* break a;
* }
*
* The `breakable` property is set false for labeled statements to indicate
* that `break` without a label is invalid.
*/
class BreakContext {
/**
* Creates a new instance.
* @param {BreakContext} upperContext The previous `BreakContext`.
* @param {boolean} breakable Indicates if we are inside a statement where
* `break` without a label will exit the statement.
* @param {string|null} label The label for the statement.
* @param {ForkContext} forkContext The current fork context.
*/
constructor(upperContext, breakable, label, forkContext) {
/**
* The previous `BreakContext`
* @type {BreakContext}
*/
this.upper = upperContext;
/**
* Indicates if we are inside a statement where `break` without a label
* will exit the statement.
* @type {boolean}
*/
this.breakable = breakable;
/**
* The label associated with the statement.
* @type {string|null}
*/
this.label = label;
/**
* The fork context for the `break`.
* @type {ForkContext}
*/
this.brokenForkContext = ForkContext.newEmpty(forkContext);
}
}
/**
* Represents the context for `ChainExpression` nodes.
*/
class ChainContext {
/**
* Creates a new instance.
* @param {ChainContext} upperContext The previous `ChainContext`.
*/
constructor(upperContext) {
/**
* The previous `ChainContext`
* @type {ChainContext}
*/
this.upper = upperContext;
/**
* The number of choice contexts inside of the `ChainContext`.
* @type {number}
*/
this.choiceContextCount = 0;
}
}
/**
* Represents a choice in the code path.
*
* Choices are created by logical operators such as `&&`, loops, conditionals,
* and `if` statements. This is the point at which the code path has a choice of
* which direction to go.
*
* The result of a choice might be in the left (test) expression of another choice,
* and in that case, may create a new fork. For example, `a || b` is a choice
* but does not create a new fork because the result of the expression is
* not used as the test expression in another expression. In this case,
* `isForkingAsResult` is false. In the expression `a || b || c`, the `a || b`
* expression appears as the test expression for `|| c`, so the
* result of `a || b` creates a fork because execution may or may not
* continue to `|| c`. `isForkingAsResult` for `a || b` in this case is true
* while `isForkingAsResult` for `|| c` is false. (`isForkingAsResult` is always
* false for `if` statements, conditional expressions, and loops.)
*
* All of the choices except one (`??`) operate on a true/false fork, meaning if
* true go one way and if false go the other (tracked by `trueForkContext` and
* `falseForkContext`). The `??` operator doesn't operate on true/false because
* the left expression is evaluated to be nullish or not, so only if nullish do
* we fork to the right expression (tracked by `nullishForkContext`).
*/
class ChoiceContext {
/**
* Creates a new instance.
* @param {ChoiceContext} upperContext The previous `ChoiceContext`.
* @param {string} kind The kind of choice. If it's a logical or assignment expression, this
* is `"&&"` or `"||"` or `"??"`; if it's an `if` statement or
* conditional expression, this is `"test"`; otherwise, this is `"loop"`.
* @param {boolean} isForkingAsResult Indicates if the result of the choice
* creates a fork.
* @param {ForkContext} forkContext The containing `ForkContext`.
*/
constructor(upperContext, kind, isForkingAsResult, forkContext) {
/**
* The previous `ChoiceContext`
* @type {ChoiceContext}
*/
this.upper = upperContext;
/**
* The kind of choice. If it's a logical or assignment expression, this
* is `"&&"` or `"||"` or `"??"`; if it's an `if` statement or
* conditional expression, this is `"test"`; otherwise, this is `"loop"`.
* @type {string}
*/
this.kind = kind;
/**
* Indicates if the result of the choice forks the code path.
* @type {boolean}
*/
this.isForkingAsResult = isForkingAsResult;
/**
* The fork context for the `true` path of the choice.
* @type {ForkContext}
*/
this.trueForkContext = ForkContext.newEmpty(forkContext);
/**
* The fork context for the `false` path of the choice.
* @type {ForkContext}
*/
this.falseForkContext = ForkContext.newEmpty(forkContext);
/**
* The fork context for when the choice result is `null` or `undefined`.
* @type {ForkContext}
*/
this.nullishForkContext = ForkContext.newEmpty(forkContext);
/**
* Indicates if any of `trueForkContext`, `falseForkContext`, or
* `nullishForkContext` have been updated with segments from a child context.
* @type {boolean}
*/
this.processed = false;
}
}
/**
* Base class for all loop contexts.
*/
class LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string} type The AST node's `type` for the loop.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
*/
constructor(upperContext, type, label, breakContext) {
/**
* The previous `LoopContext`.
* @type {LoopContext}
*/
this.upper = upperContext;
/**
* The AST node's `type` for the loop.
* @type {string}
*/
this.type = type;
/**
* The label for the loop from an enclosing `LabeledStatement`.
* @type {string|null}
*/
this.label = label;
/**
* The fork context for when `break` is encountered.
* @type {ForkContext}
*/
this.brokenForkContext = breakContext.brokenForkContext;
}
}
/**
* Represents the context for a `while` loop.
*/
class WhileLoopContext extends LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
*/
constructor(upperContext, label, breakContext) {
super(upperContext, "WhileStatement", label, breakContext);
/**
* The hardcoded literal boolean test condition for
* the loop. Used to catch infinite or skipped loops.
* @type {boolean|undefined}
*/
this.test = void 0;
/**
* The segments representing the test condition where `continue` will
* jump to. The test condition will typically have just one segment but
* it's possible for there to be more than one.
* @type {Array<CodePathSegment>|null}
*/
this.continueDestSegments = null;
}
}
/**
* Represents the context for a `do-while` loop.
*/
class DoWhileLoopContext extends LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
* @param {ForkContext} forkContext The enclosing fork context.
*/
constructor(upperContext, label, breakContext, forkContext) {
super(upperContext, "DoWhileStatement", label, breakContext);
/**
* The hardcoded literal boolean test condition for
* the loop. Used to catch infinite or skipped loops.
* @type {boolean|undefined}
*/
this.test = void 0;
/**
* The segments at the start of the loop body. This is the only loop
* where the test comes at the end, so the first iteration always
* happens and we need a reference to the first statements.
* @type {Array<CodePathSegment>|null}
*/
this.entrySegments = null;
/**
* The fork context to follow when a `continue` is found.
* @type {ForkContext}
*/
this.continueForkContext = ForkContext.newEmpty(forkContext);
}
}
/**
* Represents the context for a `for` loop.
*/
class ForLoopContext extends LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
*/
constructor(upperContext, label, breakContext) {
super(upperContext, "ForStatement", label, breakContext);
/**
* The hardcoded literal boolean test condition for
* the loop. Used to catch infinite or skipped loops.
* @type {boolean|undefined}
*/
this.test = void 0;
/**
* The end of the init expression. This may change during the lifetime
* of the instance as we traverse the loop because some loops don't have
* an init expression.
* @type {Array<CodePathSegment>|null}
*/
this.endOfInitSegments = null;
/**
* The start of the test expression. This may change during the lifetime
* of the instance as we traverse the loop because some loops don't have
* a test expression.
* @type {Array<CodePathSegment>|null}
*/
this.testSegments = null;
/**
* The end of the test expression. This may change during the lifetime
* of the instance as we traverse the loop because some loops don't have
* a test expression.
* @type {Array<CodePathSegment>|null}
*/
this.endOfTestSegments = null;
/**
* The start of the update expression. This may change during the lifetime
* of the instance as we traverse the loop because some loops don't have
* an update expression.
* @type {Array<CodePathSegment>|null}
*/
this.updateSegments = null;
/**
* The end of the update expresion. This may change during the lifetime
* of the instance as we traverse the loop because some loops don't have
* an update expression.
* @type {Array<CodePathSegment>|null}
*/
this.endOfUpdateSegments = null;
/**
* The segments representing the test condition where `continue` will
* jump to. The test condition will typically have just one segment but
* it's possible for there to be more than one. This may change during the
* lifetime of the instance as we traverse the loop because some loops
* don't have an update expression. When there is an update expression, this
* will end up pointing to that expression; otherwise it will end up pointing
* to the test expression.
* @type {Array<CodePathSegment>|null}
*/
this.continueDestSegments = null;
}
}
/**
* Represents the context for a `for-in` loop.
*
* Terminology:
* - "left" means the part of the loop to the left of the `in` keyword. For
* example, in `for (var x in y)`, the left is `var x`.
* - "right" means the part of the loop to the right of the `in` keyword. For
* example, in `for (var x in y)`, the right is `y`.
*/
class ForInLoopContext extends LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
*/
constructor(upperContext, label, breakContext) {
super(upperContext, "ForInStatement", label, breakContext);
/**
* The segments that came immediately before the start of the loop.
* This allows you to traverse backwards out of the loop into the
* surrounding code. This is necessary to evaluate the right expression
* correctly, as it must be evaluated in the same way as the left
* expression, but the pointer to these segments would otherwise be
* lost if not stored on the instance. Once the right expression has
* been evaluated, this property is no longer used.
* @type {Array<CodePathSegment>|null}
*/
this.prevSegments = null;
/**
* Segments representing the start of everything to the left of the
* `in` keyword. This can be used to move forward towards
* `endOfLeftSegments`. `leftSegments` and `endOfLeftSegments` are
* effectively the head and tail of a doubly-linked list.
* @type {Array<CodePathSegment>|null}
*/
this.leftSegments = null;
/**
* Segments representing the end of everything to the left of the
* `in` keyword. This can be used to move backward towards `leftSegments`.
* `leftSegments` and `endOfLeftSegments` are effectively the head
* and tail of a doubly-linked list.
* @type {Array<CodePathSegment>|null}
*/
this.endOfLeftSegments = null;
/**
* The segments representing the left expression where `continue` will
* jump to. In `for-in` loops, `continue` must always re-execute the
* left expression each time through the loop. This contains the same
* segments as `leftSegments`, but is duplicated here so each loop
* context has the same property pointing to where `continue` should
* end up.
* @type {Array<CodePathSegment>|null}
*/
this.continueDestSegments = null;
}
}
/**
* Represents the context for a `for-of` loop.
*/
class ForOfLoopContext extends LoopContextBase {
/**
* Creates a new instance.
* @param {LoopContext|null} upperContext The previous `LoopContext`.
* @param {string|null} label The label for the loop from an enclosing `LabeledStatement`.
* @param {BreakContext} breakContext The context for breaking the loop.
*/
constructor(upperContext, label, breakContext) {
super(upperContext, "ForOfStatement", label, breakContext);
/**
* The segments that came immediately before the start of the loop.
* This allows you to traverse backwards out of the loop into the
* surrounding code. This is necessary to evaluate the right expression
* correctly, as it must be evaluated in the same way as the left
* expression, but the pointer to these segments would otherwise be
* lost if not stored on the instance. Once the right expression has
* been evaluated, this property is no longer used.
* @type {Array<CodePathSegment>|null}
*/
this.prevSegments = null;
/**
* Segments representing the start of everything to the left of the
* `of` keyword. This can be used to move forward towards
* `endOfLeftSegments`. `leftSegments` and `endOfLeftSegments` are
* effectively the head and tail of a doubly-linked list.
* @type {Array<CodePathSegment>|null}
*/
this.leftSegments = null;
/**
* Segments representing the end of everything to the left of the
* `of` keyword. This can be used to move backward towards `leftSegments`.
* `leftSegments` and `endOfLeftSegments` are effectively the head
* and tail of a doubly-linked list.
* @type {Array<CodePathSegment>|null}
*/
this.endOfLeftSegments = null;
/**
* The segments representing the left expression where `continue` will
* jump to. In `for-in` loops, `continue` must always re-execute the
* left expression each time through the loop. This contains the same
* segments as `leftSegments`, but is duplicated here so each loop
* context has the same property pointing to where `continue` should
* end up.
* @type {Array<CodePathSegment>|null}
*/
this.continueDestSegments = null;
}
}
/**
* Represents the context for any loop.
* @typedef {WhileLoopContext|DoWhileLoopContext|ForLoopContext|ForInLoopContext|ForOfLoopContext} LoopContext
*/
/**
* Represents the context for a `switch` statement.
*/
class SwitchContext {
/**
* Creates a new instance.
* @param {SwitchContext} upperContext The previous context.
* @param {boolean} hasCase Indicates if there is at least one `case` statement.
* `default` doesn't count.
*/
constructor(upperContext, hasCase) {
/**
* The previous context.
* @type {SwitchContext}
*/
this.upper = upperContext;
/**
* Indicates if there is at least one `case` statement. `default` doesn't count.
* @type {boolean}
*/
this.hasCase = hasCase;
/**
* The `default` keyword.
* @type {Array<CodePathSegment>|null}
*/
this.defaultSegments = null;
/**
* The default case body starting segments.
* @type {Array<CodePathSegment>|null}
*/
this.defaultBodySegments = null;
/**
* Indicates if a `default` case and is empty exists.
* @type {boolean}
*/
this.foundEmptyDefault = false;
/**
* Indicates that a `default` exists and is the last case.
* @type {boolean}
*/
this.lastIsDefault = false;
/**
* The number of fork contexts created. This is equivalent to the
* number of `case` statements plus a `default` statement (if present).
* @type {number}
*/
this.forkCount = 0;
}
}
/**
* Represents the context for a `try` statement.
*/
class TryContext {
/**
* Creates a new instance.
* @param {TryContext} upperContext The previous context.
* @param {boolean} hasFinalizer Indicates if the `try` statement has a
* `finally` block.
* @param {ForkContext} forkContext The enclosing fork context.
*/
constructor(upperContext, hasFinalizer, forkContext) {
/**
* The previous context.
* @type {TryContext}
*/
this.upper = upperContext;
/**
* Indicates if the `try` statement has a `finally` block.
* @type {boolean}
*/
this.hasFinalizer = hasFinalizer;
/**
* Tracks the traversal position inside of the `try` statement. This is
* used to help determine the context necessary to create paths because
* a `try` statement may or may not have `catch` or `finally` blocks,
* and code paths behave differently in those blocks.
* @type {"try"|"catch"|"finally"}
*/
this.position = "try";
/**
* If the `try` statement has a `finally` block, this affects how a
* `return` statement behaves in the `try` block. Without `finally`,
* `return` behaves as usual and doesn't require a fork; with `finally`,
* `return` forks into the `finally` block, so we need a fork context
* to track it.
* @type {ForkContext|null}
*/
this.returnedForkContext = hasFinalizer
? ForkContext.newEmpty(forkContext)
: null;
/**
* When a `throw` occurs inside of a `try` block, the code path forks
* into the `catch` or `finally` blocks, and this fork context tracks
* that path.
* @type {ForkContext}
*/
this.thrownForkContext = ForkContext.newEmpty(forkContext);
/**
* Indicates if the last segment in the `try` block is reachable.
* @type {boolean}
*/
this.lastOfTryIsReachable = false;
/**
* Indicates if the last segment in the `catch` block is reachable.
* @type {boolean}
*/
this.lastOfCatchIsReachable = false;
}
}
//------------------------------------------------------------------------------
// Helpers
//------------------------------------------------------------------------------
/**
* Adds given segments into the `dest` array.
* If the `others` array does not include the given segments, adds to the `all`
* array as well.
*
* This adds only reachable and used segments.
* @param {CodePathSegment[]} dest A destination array (`returnedSegments` or `thrownSegments`).
* @param {CodePathSegment[]} others Another destination array (`returnedSegments` or `thrownSegments`).
* @param {CodePathSegment[]} all The unified destination array (`finalSegments`).
* @param {CodePathSegment[]} segments Segments to add.
* @returns {void}
*/
function addToReturnedOrThrown(dest, others, all, segments) {
for (let i = 0; i < segments.length; ++i) {
const segment = segments[i];
dest.push(segment);
if (!others.includes(segment)) {
all.push(segment);
}
}
}
/**
* Gets a loop context for a `continue` statement based on a given label.
* @param {CodePathState} state The state to search within.
* @param {string|null} label The label of a `continue` statement.
* @returns {LoopContext} A loop-context for a `continue` statement.
*/
function getContinueContext(state, label) {
if (!label) {
return state.loopContext;
}
let context = state.loopContext;
while (context) {
if (context.label === label) {
return context;
}
context = context.upper;
}
/* c8 ignore next */
return null;
}
/**
* Gets a context for a `break` statement.
* @param {CodePathState} state The state to search within.
* @param {string|null} label The label of a `break` statement.
* @returns {BreakContext} A context for a `break` statement.
*/
function getBreakContext(state, label) {
let context = state.breakContext;
while (context) {
if (label ? context.label === label : context.breakable) {
return context;
}
context = context.upper;
}
/* c8 ignore next */
return null;
}
/**
* Gets a context for a `return` statement. There is just one special case:
* if there is a `try` statement with a `finally` block, because that alters
* how `return` behaves; otherwise, this just passes through the given state.
* @param {CodePathState} state The state to search within
* @returns {TryContext|CodePathState} A context for a `return` statement.
*/
function getReturnContext(state) {
let context = state.tryContext;
while (context) {
if (context.hasFinalizer && context.position !== "finally") {
return context;
}
context = context.upper;
}
return state;
}
/**
* Gets a context for a `throw` statement. There is just one special case:
* if there is a `try` statement with a `finally` block and we are inside of
* a `catch` because that changes how `throw` behaves; otherwise, this just
* passes through the given state.
* @param {CodePathState} state The state to search within.
* @returns {TryContext|CodePathState} A context for a `throw` statement.
*/
function getThrowContext(state) {
let context = state.tryContext;
while (context) {
if (context.position === "try" ||
(context.hasFinalizer && context.position === "catch")
) {
return context;
}
context = context.upper;
}
return state;
}
/**
* Removes a given value from a given array.
* @param {any[]} elements An array to remove the specific element.
* @param {any} value The value to be removed.
* @returns {void}
*/
function removeFromArray(elements, value) {
elements.splice(elements.indexOf(value), 1);
}
/**
* Disconnect given segments.
*
* This is used in a process for switch statements.
* If there is the "default" chunk before other cases, the order is different
* between node's and running's.
* @param {CodePathSegment[]} prevSegments Forward segments to disconnect.
* @param {CodePathSegment[]} nextSegments Backward segments to disconnect.
* @returns {void}
*/
function disconnectSegments(prevSegments, nextSegments) {
for (let i = 0; i < prevSegments.length; ++i) {
const prevSegment = prevSegments[i];
const nextSegment = nextSegments[i];
removeFromArray(prevSegment.nextSegments, nextSegment);
removeFromArray(prevSegment.allNextSegments, nextSegment);
removeFromArray(nextSegment.prevSegments, prevSegment);
removeFromArray(nextSegment.allPrevSegments, prevSegment);
}
}
/**
* Creates looping path between two arrays of segments, ensuring that there are
* paths going between matching segments in the arrays.
* @param {CodePathState} state The state to operate on.
* @param {CodePathSegment[]} unflattenedFromSegments Segments which are source.
* @param {CodePathSegment[]} unflattenedToSegments Segments which are destination.
* @returns {void}
*/
function makeLooped(state, unflattenedFromSegments, unflattenedToSegments) {
const fromSegments = CodePathSegment.flattenUnusedSegments(unflattenedFromSegments);
const toSegments = CodePathSegment.flattenUnusedSegments(unflattenedToSegments);
const end = Math.min(fromSegments.length, toSegments.length);
/*
* This loop effectively updates a doubly-linked list between two collections
* of segments making sure that segments in the same array indices are
* combined to create a path.
*/
for (let i = 0; i < end; ++i) {
// get the segments in matching array indices
const fromSegment = fromSegments[i];
const toSegment = toSegments[i];
/*
* If the destination segment is reachable, then create a path from the
* source segment to the destination segment.
*/
if (toSegment.reachable) {
fromSegment.nextSegments.push(toSegment);
}
/*
* If the source segment is reachable, then create a path from the
* destination segment back to the source segment.
*/
if (fromSegment.reachable) {
toSegment.prevSegments.push(fromSegment);
}
/*
* Also update the arrays that don't care if the segments are reachable
* or not. This should always happen regardless of anything else.
*/
fromSegment.allNextSegments.push(toSegment);
toSegment.allPrevSegments.push(fromSegment);
/*
* If the destination segment has at least two previous segments in its
* path then that means there was one previous segment before this iteration
* of the loop was executed. So, we need to mark the source segment as
* looped.
*/
if (toSegment.allPrevSegments.length >= 2) {
CodePathSegment.markPrevSegmentAsLooped(toSegment, fromSegment);
}
// let the code path analyzer know that there's been a loop created
state.notifyLooped(fromSegment, toSegment);
}
}
/**
* Finalizes segments of `test` chunk of a ForStatement.
*
* - Adds `false` paths to paths which are leaving from the loop.
* - Sets `true` paths to paths which go to the body.
* @param {LoopContext} context A loop context to modify.
* @param {ChoiceContext} choiceContext A choice context of this loop.
* @param {CodePathSegment[]} head The current head paths.
* @returns {void}
*/
function finalizeTestSegmentsOfFor(context, choiceContext, head) {
/*
* If this choice context doesn't already contain paths from a
* child context, then add the current head to each potential path.
*/
if (!choiceContext.processed) {
choiceContext.trueForkContext.add(head);
choiceContext.falseForkContext.add(head);
choiceContext.nullishForkContext.add(head);
}
/*
* If the test condition isn't a hardcoded truthy value, then `break`
* must follow the same path as if the test condition is false. To represent
* that, we append the path for when the loop test is false (represented by
* `falseForkContext`) to the `brokenForkContext`.
*/
if (context.test !== true) {
context.brokenForkContext.addAll(choiceContext.falseForkContext);
}
context.endOfTestSegments = choiceContext.trueForkContext.makeNext(0, -1);
}
//------------------------------------------------------------------------------
// Public Interface
//------------------------------------------------------------------------------
/**
* A class which manages state to analyze code paths.
*/
class CodePathState {
/**
* Creates a new instance.
* @param {IdGenerator} idGenerator An id generator to generate id for code
* path segments.
* @param {Function} onLooped A callback function to notify looping.
*/
constructor(idGenerator, onLooped) {
/**
* The ID generator to use when creating new segments.
* @type {IdGenerator}
*/
this.idGenerator = idGenerator;
/**
* A callback function to call when there is a loop.
* @type {Function}
*/
this.notifyLooped = onLooped;
/**
* The root fork context for this state.
* @type {ForkContext}
*/
this.forkContext = ForkContext.newRoot(idGenerator);
/**
* Context for logical expressions, conditional expressions, `if` statements,
* and loops.
* @type {ChoiceContext}
*/
this.choiceContext = null;
/**
* Context for `switch` statements.
* @type {SwitchContext}
*/
this.switchContext = null;
/**
* Context for `try` statements.
* @type {TryContext}
*/
this.tryContext = null;
/**
* Context for loop statements.
* @type {LoopContext}
*/
this.loopContext = null;
/**
* Context for `break` statements.
* @type {BreakContext}
*/
this.breakContext = null;
/**
* Context for `ChainExpression` nodes.
* @type {ChainContext}
*/
this.chainContext = null;
/**
* An array that tracks the current segments in the state. The array
* starts empty and segments are added with each `onCodePathSegmentStart`
* event and removed with each `onCodePathSegmentEnd` event. Effectively,
* this is tracking the code path segment traversal as the state is
* modified.
* @type {Array<CodePathSegment>}
*/
this.currentSegments = [];
/**
* Tracks the starting segment for this path. This value never changes.
* @type {CodePathSegment}
*/
this.initialSegment = this.forkContext.head[0];
/**
* The final segments of the code path which are either `return` or `throw`.
* This is a union of the segments in `returnedForkContext` and `thrownForkContext`.
* @type {Array<CodePathSegment>}
*/
this.finalSegments = [];
/**
* The final segments of the code path which are `return`. These
* segments are also contained in `finalSegments`.
* @type {Array<CodePathSegment>}
*/
this.returnedForkContext = [];
/**
* The final segments of the code path which are `throw`. These
* segments are also contained in `finalSegments`.
* @type {Array<CodePathSegment>}
*/
this.thrownForkContext = [];
/*
* We add an `add` method so that these look more like fork contexts and
* can be used interchangeably when a fork context is needed to add more
* segments to a path.
*
* Ultimately, we want anything added to `returned` or `thrown` to also
* be added to `final`. We only add reachable and used segments to these
* arrays.
*/
const final = this.finalSegments;
const returned = this.returnedForkContext;
const thrown = this.thrownForkContext;
returned.add = addToReturnedOrThrown.bind(null, returned, thrown, final);
thrown.add = addToReturnedOrThrown.bind(null, thrown, returned, final);
}
/**
* A passthrough property exposing the current pointer as part of the API.
* @type {CodePathSegment[]}
*/
get headSegments() {
return this.forkContext.head;
}
/**
* The parent forking context.
* This is used for the root of new forks.
* @type {ForkContext}
*/
get parentForkContext() {
const current = this.forkContext;
return current && current.upper;
}
/**
* Creates and stacks new forking context.
* @param {boolean} forkLeavingPath A flag which shows being in a
* "finally" block.
* @returns {ForkContext} The created context.
*/
pushForkContext(forkLeavingPath) {
this.forkContext = ForkContext.newEmpty(
this.forkContext,
forkLeavingPath
);
return this.forkContext;
}
/**
* Pops and merges the last forking context.
* @returns {ForkContext} The last context.
*/
popForkContext() {
const lastContext = this.forkContext;
this.forkContext = lastContext.upper;
this.forkContext.replaceHead(lastContext.makeNext(0, -1));
return lastContext;
}
/**
* Creates a new path.
* @returns {void}
*/
forkPath() {
this.forkContext.add(this.parentForkContext.makeNext(-1, -1));
}
/**
* Creates a bypass path.
* This is used for such as IfStatement which does not have "else" chunk.
* @returns {void}
*/
forkBypassPath() {
this.forkContext.add(this.parentForkContext.head);
}
//--------------------------------------------------------------------------
// ConditionalExpression, LogicalExpression, IfStatement
//--------------------------------------------------------------------------
/**
* Creates a context for ConditionalExpression, LogicalExpression, AssignmentExpression (logical assignments only),
* IfStatement, WhileStatement, DoWhileStatement, or ForStatement.
*
* LogicalExpressions have cases that it goes different paths between the
* `true` case and the `false` case.
*
* For Example:
*
* if (a || b) {
* foo();
* } else {
* bar();
* }
*
* In this case, `b` is evaluated always in the code path of the `else`
* block, but it's not so in the code path of the `if` block.
* So there are 3 paths.
*
* a -> foo();
* a -> b -> foo();
* a -> b -> bar();
* @param {string} kind A kind string.
* If the new context is LogicalExpression's or AssignmentExpression's, this is `"&&"` or `"||"` or `"??"`.
* If it's IfStatement's or ConditionalExpression's, this is `"test"`.
* Otherwise, this is `"loop"`.
* @param {boolean} isForkingAsResult Indicates if the result of the choice
* creates a fork.
* @returns {void}
*/
pushChoiceContext(kind, isForkingAsResult) {
this.choiceContext = new ChoiceContext(this.choiceContext, kind, isForkingAsResult, this.forkContext);
}
/**
* Pops the last choice context and finalizes it.
* This is called upon leaving a node that represents a choice.
* @throws {Error} (Unreachable.)
* @returns {ChoiceContext} The popped context.
*/
popChoiceContext() {
const poppedChoiceContext = this.choiceContext;
const forkContext = this.forkContext;
const head = forkContext.head;
this.choiceContext = poppedChoiceContext.upper;
switch (poppedChoiceContext.kind) {
case "&&":
case "||":
case "??":
/*
* The `head` are the path of the right-hand operand.
* If we haven't previously added segments from child contexts,
* then we add these segments to all possible forks.
*/
if (!poppedChoiceContext.processed) {
poppedChoiceContext.trueForkContext.add(head);
poppedChoiceContext.falseForkContext.add(head);
poppedChoiceContext.nullishForkContext.add(head);
}
/*
* If this context is the left (test) expression for another choice
* context, such as `a || b` in the expression `a || b || c`,
* then we take the segments for this context and move them up
* to the parent context.
*/
if (poppedChoiceContext.isForkingAsResult) {
const parentContext = this.choiceContext;
parentContext.trueForkContext.addAll(poppedChoiceContext.trueForkContext);
parentContext.falseForkContext.addAll(poppedChoiceContext.falseForkContext);
parentContext.nullishForkContext.addAll(poppedChoiceContext.nullishForkContext);
parentContext.processed = true;
// Exit early so we don't collapse all paths into one.
return poppedChoiceContext;
}
break;
case "test":
if (!poppedChoiceContext.processed) {
/*
* The head segments are the path of the `if` block here.
* Updates the `true` path with the end of the `if` block.
*/
poppedChoiceContext.trueForkContext.clear();
poppedChoiceContext.trueForkContext.add(head);
} else {
/*
* The head segments are the path of the `else` block here.
* Updates the `false` path with the end of the `else`
* block.
*/
poppedChoiceContext.falseForkContext.clear();
poppedChoiceContext.falseForkContext.add(head);
}
break;
case "loop":
/*
* Loops are addressed in `popLoopContext()` so just return
* the context without modification.
*/
return poppedChoiceContext;
/* c8 ignore next */
default:
throw new Error("unreachable");
}
/*
* Merge the true path with the false path to create a single path.
*/
const combinedForkContext = poppedChoiceContext.trueForkContext;
combinedForkContext.addAll(poppedChoiceContext.falseForkContext);
forkContext.replaceHead(combinedForkContext.makeNext(0, -1));
return poppedChoiceContext;
}
/**
* Creates a code path segment to represent right-hand operand of a logical
* expression.
* This is called in the preprocessing phase when entering a node.
* @throws {Error} (Unreachable.)
* @returns {void}
*/
makeLogicalRight() {
const currentChoiceContext = this.choiceContext;
const forkContext = this.forkContext;
if (currentChoiceContext.processed) {
/*
* This context was already assigned segments from a child
* choice context. In this case, we are concerned only about
* the path that does not short-circuit and so ends up on the
* right-hand operand of the logical expression.
*/
let prevForkContext;
switch (currentChoiceContext.kind) {
case "&&": // if true then go to the right-hand side.
prevForkContext = currentChoiceContext.trueForkContext;
break;
case "||": // if false then go to the right-hand side.
prevForkContext = currentChoiceContext.falseForkContext;
break;
case "??": // Both true/false can short-circuit, so needs the third path to go to the right-hand side. That's nullishForkContext.
prevForkContext = currentChoiceContext.nullishForkContext;
break;
default:
throw new Error("unreachable");
}
/*
* Create the segment for the right-hand operand of the logical expression
* and adjust the fork context pointer to point there. The right-hand segment
* is added at the end of all segments in `prevForkContext`.
*/
forkContext.replaceHead(prevForkContext.makeNext(0, -1));
/*
* We no longer need this list of segments.
*
* Reset `processed` because we've removed the segments from the child
* choice context. This allows `popChoiceContext()` to continue adding
* segments later.
*/
prevForkContext.clear();
currentChoiceContext.processed = false;
} else {
/*
* This choice context was not assigned segments from a child
* choice context, which means that it's a terminal logical
* expression.
*
* `head` is the segments for the left-hand operand of the
* logical expression.
*
* Each of the fork contexts below are empty at this point. We choose
* the path(s) that will short-circuit and add the segment for the
* left-hand operand to it. Ultimately, this will be the only segment
* in that path due to the short-circuting, so we are just seeding
* these paths to start.
*/
switch (currentChoiceContext.kind) {
case "&&":
/*
* In most contexts, when a && expression evaluates to false,
* it short circuits, so we need to account for that by setting
* the `falseForkContext` to the left operand.
*
* When a && expression is the left-hand operand for a ??
* expression, such as `(a && b) ?? c`, a nullish value will
* also short-circuit in a different way than a false value,
* so we also set the `nullishForkContext` to the left operand.
* This path is only used with a ?? expression and is thrown
* away for any other type of logical expression, so it's safe
* to always add.
*/
currentChoiceContext.falseForkContext.add(forkContext.head);
currentChoiceContext.nullishForkContext.add(forkContext.head);
break;
case "||": // the true path can short-circuit.
currentChoiceContext.trueForkContext.add(forkContext.head);
break;
case "??": // both can short-circuit.
currentChoiceContext.trueForkContext.add(forkContext.head);
currentChoiceContext.falseForkContext.add(forkContext.head);
break;
default:
throw new Error("unreachable");
}
/*
* Create the segment for the right-hand operand of the logical expression
* and adjust the fork context pointer to point there.
*/
forkContext.replaceHead(forkContext.makeNext(-1, -1));
}
}
/**
* Makes a code path segment of the `if` block.
* @returns {void}
*/
makeIfConsequent() {
const context = this.choiceContext;
const forkContext = this.forkContext;
/*
* If any result were not transferred from child contexts,
* this sets the head segments to both cases.
* The head segments are the path of the test expression.
*/
if (!context.processed) {
context.trueForkContext.add(forkContext.head);
context.falseForkContext.add(forkContext.head);
context.nullishForkContext.add(forkContext.head);
}
context.processed = false;
// Creates new path from the `true` case.
forkContext.replaceHead(
context.trueForkContext.makeNext(0, -1)
);
}
/**
* Makes a code path segment of the `else` block.
* @returns {void}
*/
makeIfAlternate() {
const context = this.choiceContext;
const forkContext = this.forkContext;
/*
* The head segments are the path of the `if` block.
* Updates the `true` path with the end of the `if` block.
*/
context.trueForkContext.clear();
context.trueForkContext.add(forkContext.head);
context.processed = true;
// Creates new path from the `false` case.
forkContext.replaceHead(
context.falseForkContext.makeNext(0, -1)
);
}
//--------------------------------------------------------------------------
// ChainExpression
//--------------------------------------------------------------------------
/**
* Pushes a new `ChainExpression` context to the stack. This method is
* called when entering a `ChainExpression` node. A chain context is used to
* count forking in the optional chain then merge them on the exiting from the
* `ChainExpression` node.
* @returns {void}
*/
pushChainContext() {
this.chainContext = new ChainContext(this.chainContext);
}
/**
* Pop a `ChainExpression` context from the stack. This method is called on
* exiting from each `ChainExpression` node. This merges all forks of the
* last optional chaining.
* @returns {void}
*/
popChainContext() {
const context = this.chainContext;
this.chainContext = context.upper;
// pop all choice contexts of this.
for (let i = context.choiceContextCount; i > 0; --i) {
this.popChoiceContext();
}
}
/**
* Create a choice context for optional access.
* This method is called on entering to each `(Call|Member)Expression[optional=true]` node.
* This creates a choice context as similar to `LogicalExpression[operator="??"]` node.
* @returns {void}
*/
makeOptionalNode() {
if (this.chainContext) {
this.chainContext.choiceContextCount += 1;
this.pushChoiceContext("??", false);
}
}
/**
* Create a fork.
* This method is called on entering to the `arguments|property` property of each `(Call|Member)Expression` node.
* @returns {void}
*/
makeOptionalRight() {
if (this.chainContext) {
this.makeLogicalRight();
}
}
//--------------------------------------------------------------------------
// SwitchStatement
//--------------------------------------------------------------------------
/**
* Creates a context object of SwitchStatement and stacks it.
* @param {boolean} hasCase `true` if the switch statement has one or more
* case parts.
* @param {string|null} label The label text.
* @returns {void}
*/
pushSwitchContext(hasCase, label) {
this.switchContext = new SwitchContext(this.switchContext, hasCase);
this.pushBreakContext(true, label);
}
/**
* Pops the last context of SwitchStatement and finalizes it.
*
* - Disposes all forking stack for `case` and `default`.
* - Creates the next code path segment from `context.brokenForkContext`.
* - If the last `SwitchCase` node is not a `default` part, creates a path
* to the `default` body.
* @returns {void}
*/
popSwitchContext() {
const context = this.switchContext;
this.switchContext = context.upper;
const forkContext = this.forkContext;
const brokenForkContext = this.popBreakContext().brokenForkContext;
if (context.forkCount === 0) {
/*
* When there is only one `default` chunk and there is one or more
* `break` statements, even if forks are nothing, it needs to merge
* those.
*/
if (!brokenForkContext.empty) {
brokenForkContext.add(forkContext.makeNext(-1, -1));
forkContext.replaceHead(brokenForkContext.makeNext(0, -1));
}
return;
}
const lastSegments = forkContext.head;
this.forkBypassPath();
const lastCaseSegments = forkContext.head;
/*
* `brokenForkContext` is used to make the next segment.
* It must add the last segment into `brokenForkContext`.
*/
brokenForkContext.add(lastSegments);
/*
* Any value that doesn't match a `case` test should flow to the default
* case. That happens normally when the default case is last in the `switch`,
* but if it's not, we need to rewire some of the paths to be correct.
*/
if (!context.lastIsDefault) {
if (context.defaultBodySegments) {
/*
* There is a non-empty default case, so remove the path from the `default`
* label to its body for an accurate representation.
*/
disconnectSegments(context.defaultSegments, context.defaultBodySegments);
/*
* Connect the path from the last non-default case to the body of the
* default case.
*/
makeLooped(this, lastCaseSegments, context.defaultBodySegments);
} else {
/*
* There is no default case, so we treat this as if the last case
* had a `break` in it.
*/
brokenForkContext.add(lastCaseSegments);
}
}
// Traverse up to the original fork context for the `switch` statement
for (let i = 0; i < context.forkCount; ++i) {
this.forkContext = this.forkContext.upper;
}
/*
* Creates a path from all `brokenForkContext` paths.
* This is a path after `switch` statement.
*/
this.forkContext.replaceHead(brokenForkContext.makeNext(0, -1));
}
/**
* Makes a code path segment for a `SwitchCase` node.
* @param {boolean} isCaseBodyEmpty `true` if the body is empty.
* @param {boolean} isDefaultCase `true` if the body is the default case.
* @returns {void}
*/
makeSwitchCaseBody(isCaseBodyEmpty, isDefaultCase) {
const context = this.switchContext;
if (!context.hasCase) {
return;
}
/*
* Merge forks.
* The parent fork context has two segments.
* Those are from the current `case` and the body of the previous case.
*/
const parentForkContext = this.forkContext;
const forkContext = this.pushForkContext();
forkContext.add(parentForkContext.makeNext(0, -1));
/*
* Add information about the default case.
*
* The purpose of this is to identify the starting segments for the
* default case to make sure there is a path there.
*/
if (isDefaultCase) {
/*
* This is the default case in the `switch`.
*
* We first save the current pointer as `defaultSegments` to point
* to the `default` keyword.
*/
context.defaultSegments = parentForkContext.head;
/*
* If the body of the case is empty then we just set
* `foundEmptyDefault` to true; otherwise, we save a reference
* to the current pointer as `defaultBodySegments`.
*/
if (isCaseBodyEmpty) {
context.foundEmptyDefault = true;
} else {
context.defaultBodySegments = forkContext.head;
}
} else {
/*
* This is not the default case in the `switch`.
*
* If it's not empty and there is already an empty default case found,
* that means the default case actually comes before this case,
* and that it will fall through to this case. So, we can now
* ignore the previous default case (reset `foundEmptyDefault` to false)
* and set `defaultBodySegments` to the current segments because this is
* effectively the new default case.
*/
if (!isCaseBodyEmpty && context.foundEmptyDefault) {
context.foundEmptyDefault = false;
context.defaultBodySegments = forkContext.head;
}
}
// keep track if the default case ends up last
context.lastIsDefault = isDefaultCase;
context.forkCount += 1;
}
//--------------------------------------------------------------------------
// TryStatement
//--------------------------------------------------------------------------
/**
* Creates a context object of TryStatement and stacks it.
* @param {boolean} hasFinalizer `true` if the try statement has a
* `finally` block.
* @returns {void}
*/
pushTryContext(hasFinalizer) {
this.tryContext = new TryContext(this.tryContext, hasFinalizer, this.forkContext);
}
/**
* Pops the last context of TryStatement and finalizes it.
* @returns {void}
*/
popTryContext() {
const context = this.tryContext;
this.tryContext = context.upper;
/*
* If we're inside the `catch` block, that means there is no `finally`,
* so we can process the `try` and `catch` blocks the simple way and
* merge their two paths.
*/
if (context.position === "catch") {
this.popForkContext();
return;
}
/*
* The following process is executed only when there is a `finally`
* block.
*/
const originalReturnedForkContext = context.returnedForkContext;
const originalThrownForkContext = context.thrownForkContext;
// no `return` or `throw` in `try` or `catch` so there's nothing left to do
if (originalReturnedForkContext.empty && originalThrownForkContext.empty) {
return;
}
/*
* The following process is executed only when there is a `finally`
* block and there was a `return` or `throw` in the `try` or `catch`
* blocks.
*/
// Separate head to normal paths and leaving paths.
const headSegments = this.forkContext.head;
this.forkContext = this.forkContext.upper;
const normalSegments = headSegments.slice(0, headSegments.length / 2 | 0);
const leavingSegments = headSegments.slice(headSegments.length / 2 | 0);
// Forwards the leaving path to upper contexts.
if (!originalReturnedForkContext.empty) {
getReturnContext(this).returnedForkContext.add(leavingSegments);
}
if (!originalThrownForkContext.empty) {
getThrowContext(this).thrownForkContext.add(leavingSegments);
}
// Sets the normal path as the next.
this.forkContext.replaceHead(normalSegments);
/*
* If both paths of the `try` block and the `catch` block are
* unreachable, the next path becomes unreachable as well.
*/
if (!context.lastOfTryIsReachable && !context.lastOfCatchIsReachable) {
this.forkContext.makeUnreachable();
}
}
/**
* Makes a code path segment for a `catch` block.
* @returns {void}
*/
makeCatchBlock() {
const context = this.tryContext;
const forkContext = this.forkContext;
const originalThrownForkContext = context.thrownForkContext;
/*
* We are now in a catch block so we need to update the context
* with that information. This includes creating a new fork
* context in case we encounter any `throw` statements here.
*/
context.position = "catch";
context.thrownForkContext = ForkContext.newEmpty(forkContext);
context.lastOfTryIsReachable = forkContext.reachable;
// Merge the thrown paths from the `try` and `catch` blocks
originalThrownForkContext.add(forkContext.head);
const thrownSegments = originalThrownForkContext.makeNext(0, -1);
// Fork to a bypass and the merged thrown path.
this.pushForkContext();
this.forkBypassPath();
this.forkContext.add(thrownSegments);
}
/**
* Makes a code path segment for a `finally` block.
*
* In the `finally` block, parallel paths are created. The parallel paths
* are used as leaving-paths. The leaving-paths are paths from `return`
* statements and `throw` statements in a `try` block or a `catch` block.
* @returns {void}
*/
makeFinallyBlock() {
const context = this.tryContext;
let forkContext = this.forkContext;
const originalReturnedForkContext = context.returnedForkContext;
const originalThrownForContext = context.thrownForkContext;
const headOfLeavingSegments = forkContext.head;
// Update state.
if (context.position === "catch") {
// Merges two paths from the `try` block and `catch` block.
this.popForkContext();
forkContext = this.forkContext;
context.lastOfCatchIsReachable = forkContext.reachable;
} else {
context.lastOfTryIsReachable = forkContext.reachable;
}
context.position = "finally";
/*
* If there was no `return` or `throw` in either the `try` or `catch`
* blocks, then there's no further code paths to create for `finally`.
*/
if (originalReturnedForkContext.empty && originalThrownForContext.empty) {
// This path does not leave.
return;
}
/*
* Create a parallel segment from merging returned and thrown.
* This segment will leave at the end of this `finally` block.
*/
const segments = forkContext.makeNext(-1, -1);
for (let i = 0; i < forkContext.count; ++i) {
const prevSegsOfLeavingSegment = [headOfLeavingSegments[i]];
for (let j = 0; j < originalReturnedForkContext.segmentsList.length; ++j) {
prevSegsOfLeavingSegment.push(originalReturnedForkContext.segmentsList[j][i]);
}
for (let j = 0; j < originalThrownForContext.segmentsList.length; ++j) {
prevSegsOfLeavingSegment.push(originalThrownForContext.segmentsList[j][i]);
}
segments.push(
CodePathSegment.newNext(
this.idGenerator.next(),
prevSegsOfLeavingSegment
)
);
}
this.pushForkContext(true);
this.forkContext.add(segments);
}
/**
* Makes a code path segment from the first throwable node to the `catch`
* block or the `finally` block.
* @returns {void}
*/
makeFirstThrowablePathInTryBlock() {
const forkContext = this.forkContext;
if (!forkContext.reachable) {
return;
}
const context = getThrowContext(this);
if (context === this ||
context.position !== "try" ||
!context.thrownForkContext.empty
) {
return;
}
context.thrownForkContext.add(forkContext.head);
forkContext.replaceHead(forkContext.makeNext(-1, -1));
}
//--------------------------------------------------------------------------
// Loop Statements
//--------------------------------------------------------------------------
/**
* Creates a context object of a loop statement and stacks it.
* @param {string} type The type of the node which was triggered. One of
* `WhileStatement`, `DoWhileStatement`, `ForStatement`, `ForInStatement`,
* and `ForStatement`.
* @param {string|null} label A label of the node which was triggered.
* @throws {Error} (Unreachable - unknown type.)
* @returns {void}
*/
pushLoopContext(type, label) {
const forkContext = this.forkContext;
// All loops need a path to account for `break` statements
const breakContext = this.pushBreakContext(true, label);
switch (type) {
case "WhileStatement":
this.pushChoiceContext("loop", false);
this.loopContext = new WhileLoopContext(this.loopContext, label, breakContext);
break;
case "DoWhileStatement":
this.pushChoiceContext("loop", false);
this.loopContext = new DoWhileLoopContext(this.loopContext, label, breakContext, forkContext);
break;
case "ForStatement":
this.pushChoiceContext("loop", false);
this.loopContext = new ForLoopContext(this.loopContext, label, breakContext);
break;
case "ForInStatement":
this.loopContext = new ForInLoopContext(this.loopContext, label, breakContext);
break;
case "ForOfStatement":
this.loopContext = new ForOfLoopContext(this.loopContext, label, breakContext);
break;
/* c8 ignore next */
default:
throw new Error(`unknown type: "${type}"`);
}
}
/**
* Pops the last context of a loop statement and finalizes it.
* @throws {Error} (Unreachable - unknown type.)
* @returns {void}
*/
popLoopContext() {
const context = this.loopContext;
this.loopContext = context.upper;
const forkContext = this.forkContext;
const brokenForkContext = this.popBreakContext().brokenForkContext;
// Creates a looped path.
switch (context.type) {
case "WhileStatement":
case "ForStatement":
this.popChoiceContext();
/*
* Creates the path from the end of the loop body up to the
* location where `continue` would jump to.
*/
makeLooped(
this,
forkContext.head,
context.continueDestSegments
);
break;
case "DoWhileStatement": {
const choiceContext = this.popChoiceContext();
if (!choiceContext.processed) {
choiceContext.trueForkContext.add(forkContext.head);
choiceContext.falseForkContext.add(forkContext.head);
}
/*
* If this isn't a hardcoded `true` condition, then `break`
* should continue down the path as if the condition evaluated
* to false.
*/
if (context.test !== true) {
brokenForkContext.addAll(choiceContext.falseForkContext);
}
/*
* When the condition is true, the loop continues back to the top,
* so create a path from each possible true condition back to the
* top of the loop.
*/
const segmentsList = choiceContext.trueForkContext.segmentsList;
for (let i = 0; i < segmentsList.length; ++i) {
makeLooped(
this,
segmentsList[i],
context.entrySegments
);
}
break;
}
case "ForInStatement":
case "ForOfStatement":
brokenForkContext.add(forkContext.head);
/*
* Creates the path from the end of the loop body up to the
* left expression (left of `in` or `of`) of the loop.
*/
makeLooped(
this,
forkContext.head,
context.leftSegments
);
break;
/* c8 ignore next */
default:
throw new Error("unreachable");
}
/*
* If there wasn't a `break` statement in the loop, then we're at
* the end of the loop's path, so we make an unreachable segment
* to mark that.
*
* If there was a `break` statement, then we continue on into the
* `brokenForkContext`.
*/
if (brokenForkContext.empty) {
forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));
} else {
forkContext.replaceHead(brokenForkContext.makeNext(0, -1));
}
}
/**
* Makes a code path segment for the test part of a WhileStatement.
* @param {boolean|undefined} test The test value (only when constant).
* @returns {void}
*/
makeWhileTest(test) {
const context = this.loopContext;
const forkContext = this.forkContext;
const testSegments = forkContext.makeNext(0, -1);
// Update state.
context.test = test;
context.continueDestSegments = testSegments;
forkContext.replaceHead(testSegments);
}
/**
* Makes a code path segment for the body part of a WhileStatement.
* @returns {void}
*/
makeWhileBody() {
const context = this.loopContext;
const choiceContext = this.choiceContext;
const forkContext = this.forkContext;
if (!choiceContext.processed) {
choiceContext.trueForkContext.add(forkContext.head);
choiceContext.falseForkContext.add(forkContext.head);
}
/*
* If this isn't a hardcoded `true` condition, then `break`
* should continue down the path as if the condition evaluated
* to false.
*/
if (context.test !== true) {
context.brokenForkContext.addAll(choiceContext.falseForkContext);
}
forkContext.replaceHead(choiceContext.trueForkContext.makeNext(0, -1));
}
/**
* Makes a code path segment for the body part of a DoWhileStatement.
* @returns {void}
*/
makeDoWhileBody() {
const context = this.loopContext;
const forkContext = this.forkContext;
const bodySegments = forkContext.makeNext(-1, -1);
// Update state.
context.entrySegments = bodySegments;
forkContext.replaceHead(bodySegments);
}
/**
* Makes a code path segment for the test part of a DoWhileStatement.
* @param {boolean|undefined} test The test value (only when constant).
* @returns {void}
*/
makeDoWhileTest(test) {
const context = this.loopContext;
const forkContext = this.forkContext;
context.test = test;
/*
* If there is a `continue` statement in the loop then `continueForkContext`
* won't be empty. We wire up the path from `continue` to the loop
* test condition and then continue the traversal in the root fork context.
*/
if (!context.continueForkContext.empty) {
context.continueForkContext.add(forkContext.head);
const testSegments = context.continueForkContext.makeNext(0, -1);
forkContext.replaceHead(testSegments);
}
}
/**
* Makes a code path segment for the test part of a ForStatement.
* @param {boolean|undefined} test The test value (only when constant).
* @returns {void}
*/
makeForTest(test) {
const context = this.loopContext;
const forkContext = this.forkContext;
const endOfInitSegments = forkContext.head;
const testSegments = forkContext.makeNext(-1, -1);
/*
* Update the state.
*
* The `continueDestSegments` are set to `testSegments` because we
* don't yet know if there is an update expression in this loop. So,
* from what we already know at this point, a `continue` statement
* will jump back to the test expression.
*/
context.test = test;
context.endOfInitSegments = endOfInitSegments;
context.continueDestSegments = context.testSegments = testSegments;
forkContext.replaceHead(testSegments);
}
/**
* Makes a code path segment for the update part of a ForStatement.
* @returns {void}
*/
makeForUpdate() {
const context = this.loopContext;
const choiceContext = this.choiceContext;
const forkContext = this.forkContext;
// Make the next paths of the test.
if (context.testSegments) {
finalizeTestSegmentsOfFor(
context,
choiceContext,
forkContext.head
);
} else {
context.endOfInitSegments = forkContext.head;
}
/*
* Update the state.
*
* The `continueDestSegments` are now set to `updateSegments` because we
* know there is an update expression in this loop. So, a `continue` statement
* in the loop will jump to the update expression first, and then to any
* test expression the loop might have.
*/
const updateSegments = forkContext.makeDisconnected(-1, -1);
context.continueDestSegments = context.updateSegments = updateSegments;
forkContext.replaceHead(updateSegments);
}
/**
* Makes a code path segment for the body part of a ForStatement.
* @returns {void}
*/
makeForBody() {
const context = this.loopContext;
const choiceContext = this.choiceContext;
const forkContext = this.forkContext;
/*
* Determine what to do based on which part of the `for` loop are present.
* 1. If there is an update expression, then `updateSegments` is not null and
* we need to assign `endOfUpdateSegments`, and if there is a test
* expression, we then need to create the looped path to get back to
* the test condition.
* 2. If there is no update expression but there is a test expression,
* then we only need to update the test segment information.
* 3. If there is no update expression and no test expression, then we
* just save `endOfInitSegments`.
*/
if (context.updateSegments) {
context.endOfUpdateSegments = forkContext.head;
/*
* In a `for` loop that has both an update expression and a test
* condition, execution flows from the test expression into the
* loop body, to the update expression, and then back to the test
* expression to determine if the loop should continue.
*
* To account for that, we need to make a path from the end of the
* update expression to the start of the test expression. This is
* effectively what creates the loop in the code path.
*/
if (context.testSegments) {
makeLooped(
this,
context.endOfUpdateSegments,
context.testSegments
);
}
} else if (context.testSegments) {
finalizeTestSegmentsOfFor(
context,
choiceContext,
forkContext.head
);
} else {
context.endOfInitSegments = forkContext.head;
}
let bodySegments = context.endOfTestSegments;
/*
* If there is a test condition, then there `endOfTestSegments` is also
* the start of the loop body. If there isn't a test condition then
* `bodySegments` will be null and we need to look elsewhere to find
* the start of the body.
*
* The body starts at the end of the init expression and ends at the end
* of the update expression, so we use those locations to determine the
* body segments.
*/
if (!bodySegments) {
const prevForkContext = ForkContext.newEmpty(forkContext);
prevForkContext.add(context.endOfInitSegments);
if (context.endOfUpdateSegments) {
prevForkContext.add(context.endOfUpdateSegments);
}
bodySegments = prevForkContext.makeNext(0, -1);
}
/*
* If there was no test condition and no update expression, then
* `continueDestSegments` will be null. In that case, a
* `continue` should skip directly to the body of the loop.
* Otherwise, we want to keep the current `continueDestSegments`.
*/
context.continueDestSegments = context.continueDestSegments || bodySegments;
// move pointer to the body
forkContext.replaceHead(bodySegments);
}
/**
* Makes a code path segment for the left part of a ForInStatement and a
* ForOfStatement.
* @returns {void}
*/
makeForInOfLeft() {
const context = this.loopContext;
const forkContext = this.forkContext;
const leftSegments = forkContext.makeDisconnected(-1, -1);
// Update state.
context.prevSegments = forkContext.head;
context.leftSegments = context.continueDestSegments = leftSegments;
forkContext.replaceHead(leftSegments);
}
/**
* Makes a code path segment for the right part of a ForInStatement and a
* ForOfStatement.
* @returns {void}
*/
makeForInOfRight() {
const context = this.loopContext;
const forkContext = this.forkContext;
const temp = ForkContext.newEmpty(forkContext);
temp.add(context.prevSegments);
const rightSegments = temp.makeNext(-1, -1);
// Update state.
context.endOfLeftSegments = forkContext.head;
forkContext.replaceHead(rightSegments);
}
/**
* Makes a code path segment for the body part of a ForInStatement and a
* ForOfStatement.
* @returns {void}
*/
makeForInOfBody() {
const context = this.loopContext;
const forkContext = this.forkContext;
const temp = ForkContext.newEmpty(forkContext);
temp.add(context.endOfLeftSegments);
const bodySegments = temp.makeNext(-1, -1);
// Make a path: `right` -> `left`.
makeLooped(this, forkContext.head, context.leftSegments);
// Update state.
context.brokenForkContext.add(forkContext.head);
forkContext.replaceHead(bodySegments);
}
//--------------------------------------------------------------------------
// Control Statements
//--------------------------------------------------------------------------
/**
* Creates new context in which a `break` statement can be used. This occurs inside of a loop,
* labeled statement, or switch statement.
* @param {boolean} breakable Indicates if we are inside a statement where
* `break` without a label will exit the statement.
* @param {string|null} label The label associated with the statement.
* @returns {BreakContext} The new context.
*/
pushBreakContext(breakable, label) {
this.breakContext = new BreakContext(this.breakContext, breakable, label, this.forkContext);
return this.breakContext;
}
/**
* Removes the top item of the break context stack.
* @returns {Object} The removed context.
*/
popBreakContext() {
const context = this.breakContext;
const forkContext = this.forkContext;
this.breakContext = context.upper;
// Process this context here for other than switches and loops.
if (!context.breakable) {
const brokenForkContext = context.brokenForkContext;
if (!brokenForkContext.empty) {
brokenForkContext.add(forkContext.head);
forkContext.replaceHead(brokenForkContext.makeNext(0, -1));
}
}
return context;
}
/**
* Makes a path for a `break` statement.
*
* It registers the head segment to a context of `break`.
* It makes new unreachable segment, then it set the head with the segment.
* @param {string|null} label A label of the break statement.
* @returns {void}
*/
makeBreak(label) {
const forkContext = this.forkContext;
if (!forkContext.reachable) {
return;
}
const context = getBreakContext(this, label);
if (context) {
context.brokenForkContext.add(forkContext.head);
}
/* c8 ignore next */
forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));
}
/**
* Makes a path for a `continue` statement.
*
* It makes a looping path.
* It makes new unreachable segment, then it set the head with the segment.
* @param {string|null} label A label of the continue statement.
* @returns {void}
*/
makeContinue(label) {
const forkContext = this.forkContext;
if (!forkContext.reachable) {
return;
}
const context = getContinueContext(this, label);
if (context) {
if (context.continueDestSegments) {
makeLooped(this, forkContext.head, context.continueDestSegments);
// If the context is a for-in/of loop, this affects a break also.
if (context.type === "ForInStatement" ||
context.type === "ForOfStatement"
) {
context.brokenForkContext.add(forkContext.head);
}
} else {
context.continueForkContext.add(forkContext.head);
}
}
forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));
}
/**
* Makes a path for a `return` statement.
*
* It registers the head segment to a context of `return`.
* It makes new unreachable segment, then it set the head with the segment.
* @returns {void}
*/
makeReturn() {
const forkContext = this.forkContext;
if (forkContext.reachable) {
getReturnContext(this).returnedForkContext.add(forkContext.head);
forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));
}
}
/**
* Makes a path for a `throw` statement.
*
* It registers the head segment to a context of `throw`.
* It makes new unreachable segment, then it set the head with the segment.
* @returns {void}
*/
makeThrow() {
const forkContext = this.forkContext;
if (forkContext.reachable) {
getThrowContext(this).thrownForkContext.add(forkContext.head);
forkContext.replaceHead(forkContext.makeUnreachable(-1, -1));
}
}
/**
* Makes the final path.
* @returns {void}
*/
makeFinal() {
const segments = this.currentSegments;
if (segments.length > 0 && segments[0].reachable) {
this.returnedForkContext.add(segments);
}
}
}
module.exports = CodePathState;
|