File size: 8,340 Bytes
5325fcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

"""
Pytorch Unet Module used for diffusion.
"""

from dataclasses import dataclass
import typing as tp

import torch
from torch import nn
from torch.nn import functional as F
from audiocraft.modules.transformer import StreamingTransformer, create_sin_embedding


@dataclass
class Output:
    sample: torch.Tensor


def get_model(cfg, channels: int, side: int, num_steps: int):
    if cfg.model == 'unet':
        return DiffusionUnet(
            chin=channels, num_steps=num_steps, **cfg.diffusion_unet)
    else:
        raise RuntimeError('Not Implemented')


class ResBlock(nn.Module):
    def __init__(self, channels: int, kernel: int = 3, norm_groups: int = 4,
                 dilation: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        stride = 1
        padding = dilation * (kernel - stride) // 2
        Conv = nn.Conv1d
        Drop = nn.Dropout1d
        self.norm1 = nn.GroupNorm(norm_groups, channels)
        self.conv1 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation1 = activation()
        self.dropout1 = Drop(dropout)

        self.norm2 = nn.GroupNorm(norm_groups, channels)
        self.conv2 = Conv(channels, channels, kernel, 1, padding, dilation=dilation)
        self.activation2 = activation()
        self.dropout2 = Drop(dropout)

    def forward(self, x):
        h = self.dropout1(self.conv1(self.activation1(self.norm1(x))))
        h = self.dropout2(self.conv2(self.activation2(self.norm2(h))))
        return x + h


class DecoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        self.res_blocks = nn.Sequential(
            *[ResBlock(chin, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])
        self.norm = nn.GroupNorm(norm_groups, chin)
        ConvTr = nn.ConvTranspose1d
        self.convtr = ConvTr(chin, chout, kernel, stride, padding, bias=False)
        self.activation = activation()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.res_blocks(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.convtr(x)
        return x


class EncoderLayer(nn.Module):
    def __init__(self, chin: int, chout: int, kernel: int = 4, stride: int = 2,
                 norm_groups: int = 4, res_blocks: int = 1, activation: tp.Type[nn.Module] = nn.ReLU,
                 dropout: float = 0.):
        super().__init__()
        padding = (kernel - stride) // 2
        Conv = nn.Conv1d
        self.conv = Conv(chin, chout, kernel, stride, padding, bias=False)
        self.norm = nn.GroupNorm(norm_groups, chout)
        self.activation = activation()
        self.res_blocks = nn.Sequential(
            *[ResBlock(chout, norm_groups=norm_groups, dilation=2**idx, dropout=dropout)
              for idx in range(res_blocks)])

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, C, T = x.shape
        stride, = self.conv.stride
        pad = (stride - (T % stride)) % stride
        x = F.pad(x, (0, pad))

        x = self.conv(x)
        x = self.norm(x)
        x = self.activation(x)
        x = self.res_blocks(x)
        return x


class BLSTM(nn.Module):
    """BiLSTM with same hidden units as input dim.
    """
    def __init__(self, dim, layers=2):
        super().__init__()
        self.lstm = nn.LSTM(bidirectional=True, num_layers=layers, hidden_size=dim, input_size=dim)
        self.linear = nn.Linear(2 * dim, dim)

    def forward(self, x):
        x = x.permute(2, 0, 1)
        x = self.lstm(x)[0]
        x = self.linear(x)
        x = x.permute(1, 2, 0)
        return x


class DiffusionUnet(nn.Module):
    def __init__(self, chin: int = 3, hidden: int = 24, depth: int = 3, growth: float = 2.,
                 max_channels: int = 10_000, num_steps: int = 1000, emb_all_layers=False, cross_attention: bool = False,
                 bilstm: bool = False, transformer: bool = False,
                 codec_dim: tp.Optional[int] = None, **kwargs):
        super().__init__()
        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.embeddings: tp.Optional[nn.ModuleList] = None
        self.embedding = nn.Embedding(num_steps, hidden)
        if emb_all_layers:
            self.embeddings = nn.ModuleList()
        self.condition_embedding: tp.Optional[nn.Module] = None
        for d in range(depth):
            encoder = EncoderLayer(chin, hidden, **kwargs)
            decoder = DecoderLayer(hidden, chin, **kwargs)
            self.encoders.append(encoder)
            self.decoders.insert(0, decoder)
            if emb_all_layers and d > 0:
                assert self.embeddings is not None
                self.embeddings.append(nn.Embedding(num_steps, hidden))
            chin = hidden
            hidden = min(int(chin * growth), max_channels)
        self.bilstm: tp.Optional[nn.Module]
        if bilstm:
            self.bilstm = BLSTM(chin)
        else:
            self.bilstm = None
        self.use_transformer = transformer
        self.cross_attention = False
        if transformer:
            self.cross_attention = cross_attention
            self.transformer = StreamingTransformer(chin, 8, 6, bias_ff=False, bias_attn=False,
                                                    cross_attention=cross_attention)

        self.use_codec = False
        if codec_dim is not None:
            self.conv_codec = nn.Conv1d(codec_dim, chin, 1)
            self.use_codec = True

    def forward(self, x: torch.Tensor, step: tp.Union[int, torch.Tensor], condition: tp.Optional[torch.Tensor] = None):
        skips = []
        bs = x.size(0)
        z = x
        view_args = [1]
        if type(step) is torch.Tensor:
            step_tensor = step
        else:
            step_tensor = torch.tensor([step], device=x.device, dtype=torch.long).expand(bs)

        for idx, encoder in enumerate(self.encoders):
            z = encoder(z)
            if idx == 0:
                z = z + self.embedding(step_tensor).view(bs, -1, *view_args).expand_as(z)
            elif self.embeddings is not None:
                z = z + self.embeddings[idx - 1](step_tensor).view(bs, -1, *view_args).expand_as(z)

            skips.append(z)

        if self.use_codec:  # insert condition in the bottleneck
            assert condition is not None, "Model defined for conditionnal generation"
            condition_emb = self.conv_codec(condition)  # reshape to the bottleneck dim
            assert condition_emb.size(-1) <= 2 * z.size(-1), \
                f"You are downsampling the conditionning with factor >=2 : {condition_emb.size(-1)=} and {z.size(-1)=}"
            if not self.cross_attention:

                condition_emb = torch.nn.functional.interpolate(condition_emb, z.size(-1))
                assert z.size() == condition_emb.size()
                z += condition_emb
                cross_attention_src = None
            else:
                cross_attention_src = condition_emb.permute(0, 2, 1)  # B, T, C
                B, T, C = cross_attention_src.shape
                positions = torch.arange(T, device=x.device).view(1, -1, 1)
                pos_emb = create_sin_embedding(positions, C, max_period=10_000, dtype=cross_attention_src.dtype)
                cross_attention_src = cross_attention_src + pos_emb
        if self.use_transformer:
            z = self.transformer(z.permute(0, 2, 1), cross_attention_src=cross_attention_src).permute(0, 2, 1)
        else:
            if self.bilstm is None:
                z = torch.zeros_like(z)
            else:
                z = self.bilstm(z)

        for decoder in self.decoders:
            s = skips.pop(-1)
            z = z[:, :, :s.shape[2]]
            z = z + s
            z = decoder(z)

        z = z[:, :, :x.shape[2]]
        return Output(z)