Spaces:
Running
on
A10G
Running
on
A10G
File size: 14,774 Bytes
5325fcc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 |
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import logging
import multiprocessing
from pathlib import Path
import typing as tp
import flashy
import omegaconf
import torch
from torch import nn
from . import base, builders
from .. import models, quantization
from ..utils import checkpoint
from ..utils.samples.manager import SampleManager
from ..utils.utils import get_pool_executor
logger = logging.getLogger(__name__)
class CompressionSolver(base.StandardSolver):
"""Solver for compression task.
The compression task combines a set of perceptual and objective losses
to train an EncodecModel (composed of an encoder-decoder and a quantizer)
to perform high fidelity audio reconstruction.
"""
def __init__(self, cfg: omegaconf.DictConfig):
super().__init__(cfg)
self.rng: torch.Generator # set at each epoch
self.adv_losses = builders.get_adversarial_losses(self.cfg)
self.aux_losses = nn.ModuleDict()
self.info_losses = nn.ModuleDict()
assert not cfg.fsdp.use, "FSDP not supported by CompressionSolver."
loss_weights = dict()
for loss_name, weight in self.cfg.losses.items():
if loss_name in ['adv', 'feat']:
for adv_name, _ in self.adv_losses.items():
loss_weights[f'{loss_name}_{adv_name}'] = weight
elif weight > 0:
self.aux_losses[loss_name] = builders.get_loss(loss_name, self.cfg)
loss_weights[loss_name] = weight
else:
self.info_losses[loss_name] = builders.get_loss(loss_name, self.cfg)
self.balancer = builders.get_balancer(loss_weights, self.cfg.balancer)
self.register_stateful('adv_losses')
@property
def best_metric_name(self) -> tp.Optional[str]:
# best model is the last for the compression model
return None
def build_model(self):
"""Instantiate model and optimizer."""
# Model and optimizer
self.model = models.builders.get_compression_model(self.cfg).to(self.device)
self.optimizer = builders.get_optimizer(self.model.parameters(), self.cfg.optim)
self.register_stateful('model', 'optimizer')
self.register_best_state('model')
self.register_ema('model')
def build_dataloaders(self):
"""Instantiate audio dataloaders for each stage."""
self.dataloaders = builders.get_audio_datasets(self.cfg)
def show(self):
"""Show the compression model and employed adversarial loss."""
self.logger.info(f"Compression model with {self.model.quantizer.total_codebooks} codebooks:")
self.log_model_summary(self.model)
self.logger.info("Adversarial loss:")
self.log_model_summary(self.adv_losses)
self.logger.info("Auxiliary losses:")
self.logger.info(self.aux_losses)
self.logger.info("Info losses:")
self.logger.info(self.info_losses)
def run_step(self, idx: int, batch: torch.Tensor, metrics: dict):
"""Perform one training or valid step on a given batch."""
x = batch.to(self.device)
y = x.clone()
qres = self.model(x)
assert isinstance(qres, quantization.QuantizedResult)
y_pred = qres.x
# Log bandwidth in kb/s
metrics['bandwidth'] = qres.bandwidth.mean()
if self.is_training:
d_losses: dict = {}
if len(self.adv_losses) > 0 and torch.rand(1, generator=self.rng).item() <= 1 / self.cfg.adversarial.every:
for adv_name, adversary in self.adv_losses.items():
disc_loss = adversary.train_adv(y_pred, y)
d_losses[f'd_{adv_name}'] = disc_loss
metrics['d_loss'] = torch.sum(torch.stack(list(d_losses.values())))
metrics.update(d_losses)
balanced_losses: dict = {}
other_losses: dict = {}
# penalty from quantization
if qres.penalty is not None and qres.penalty.requires_grad:
other_losses['penalty'] = qres.penalty # penalty term from the quantizer
# adversarial losses
for adv_name, adversary in self.adv_losses.items():
adv_loss, feat_loss = adversary(y_pred, y)
balanced_losses[f'adv_{adv_name}'] = adv_loss
balanced_losses[f'feat_{adv_name}'] = feat_loss
# auxiliary losses
for loss_name, criterion in self.aux_losses.items():
loss = criterion(y_pred, y)
balanced_losses[loss_name] = loss
# weighted losses
metrics.update(balanced_losses)
metrics.update(other_losses)
metrics.update(qres.metrics)
if self.is_training:
# backprop losses that are not handled by balancer
other_loss = torch.tensor(0., device=self.device)
if 'penalty' in other_losses:
other_loss += other_losses['penalty']
if other_loss.requires_grad:
other_loss.backward(retain_graph=True)
ratio1 = sum(p.grad.data.norm(p=2).pow(2)
for p in self.model.parameters() if p.grad is not None)
assert isinstance(ratio1, torch.Tensor)
metrics['ratio1'] = ratio1.sqrt()
# balancer losses backward, returns effective training loss
# with effective weights at the current batch.
metrics['g_loss'] = self.balancer.backward(balanced_losses, y_pred)
# add metrics corresponding to weight ratios
metrics.update(self.balancer.metrics)
ratio2 = sum(p.grad.data.norm(p=2).pow(2)
for p in self.model.parameters() if p.grad is not None)
assert isinstance(ratio2, torch.Tensor)
metrics['ratio2'] = ratio2.sqrt()
# optim
flashy.distrib.sync_model(self.model)
if self.cfg.optim.max_norm:
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), self.cfg.optim.max_norm
)
self.optimizer.step()
self.optimizer.zero_grad()
# informative losses only
info_losses: dict = {}
with torch.no_grad():
for loss_name, criterion in self.info_losses.items():
loss = criterion(y_pred, y)
info_losses[loss_name] = loss
metrics.update(info_losses)
# aggregated GAN losses: this is useful to report adv and feat across different adversarial loss setups
adv_losses = [loss for loss_name, loss in metrics.items() if loss_name.startswith('adv')]
if len(adv_losses) > 0:
metrics['adv'] = torch.sum(torch.stack(adv_losses))
feat_losses = [loss for loss_name, loss in metrics.items() if loss_name.startswith('feat')]
if len(feat_losses) > 0:
metrics['feat'] = torch.sum(torch.stack(feat_losses))
return metrics
def run_epoch(self):
# reset random seed at the beginning of the epoch
self.rng = torch.Generator()
self.rng.manual_seed(1234 + self.epoch)
# run epoch
super().run_epoch()
def evaluate(self):
"""Evaluate stage. Runs audio reconstruction evaluation."""
self.model.eval()
evaluate_stage_name = str(self.current_stage)
loader = self.dataloaders['evaluate']
updates = len(loader)
lp = self.log_progress(f'{evaluate_stage_name} inference', loader, total=updates, updates=self.log_updates)
average = flashy.averager()
pendings = []
ctx = multiprocessing.get_context('spawn')
with get_pool_executor(self.cfg.evaluate.num_workers, mp_context=ctx) as pool:
for idx, batch in enumerate(lp):
x = batch.to(self.device)
with torch.no_grad():
qres = self.model(x)
y_pred = qres.x.cpu()
y = batch.cpu() # should already be on CPU but just in case
pendings.append(pool.submit(evaluate_audio_reconstruction, y_pred, y, self.cfg))
metrics_lp = self.log_progress(f'{evaluate_stage_name} metrics', pendings, updates=self.log_updates)
for pending in metrics_lp:
metrics = pending.result()
metrics = average(metrics)
metrics = flashy.distrib.average_metrics(metrics, len(loader))
return metrics
def generate(self):
"""Generate stage."""
self.model.eval()
sample_manager = SampleManager(self.xp, map_reference_to_sample_id=True)
generate_stage_name = str(self.current_stage)
loader = self.dataloaders['generate']
updates = len(loader)
lp = self.log_progress(generate_stage_name, loader, total=updates, updates=self.log_updates)
for batch in lp:
reference, _ = batch
reference = reference.to(self.device)
with torch.no_grad():
qres = self.model(reference)
assert isinstance(qres, quantization.QuantizedResult)
reference = reference.cpu()
estimate = qres.x.cpu()
sample_manager.add_samples(estimate, self.epoch, ground_truth_wavs=reference)
flashy.distrib.barrier()
def load_from_pretrained(self, name: str) -> dict:
model = models.CompressionModel.get_pretrained(name)
if isinstance(model, models.DAC):
raise RuntimeError("Cannot fine tune a DAC model.")
elif isinstance(model, models.HFEncodecCompressionModel):
self.logger.warning('Trying to automatically convert a HuggingFace model '
'to AudioCraft, this might fail!')
state = model.model.state_dict()
new_state = {}
for k, v in state.items():
if k.startswith('decoder.layers') and '.conv.' in k and '.block.' not in k:
# We need to determine if this a convtr or a regular conv.
layer = int(k.split('.')[2])
if isinstance(model.model.decoder.layers[layer].conv, torch.nn.ConvTranspose1d):
k = k.replace('.conv.', '.convtr.')
k = k.replace('encoder.layers.', 'encoder.model.')
k = k.replace('decoder.layers.', 'decoder.model.')
k = k.replace('conv.', 'conv.conv.')
k = k.replace('convtr.', 'convtr.convtr.')
k = k.replace('quantizer.layers.', 'quantizer.vq.layers.')
k = k.replace('.codebook.', '._codebook.')
new_state[k] = v
state = new_state
elif isinstance(model, models.EncodecModel):
state = model.state_dict()
else:
raise RuntimeError(f"Cannot fine tune model type {type(model)}.")
return {
'best_state': {'model': state}
}
@staticmethod
def model_from_checkpoint(checkpoint_path: tp.Union[Path, str],
device: tp.Union[torch.device, str] = 'cpu') -> models.CompressionModel:
"""Instantiate a CompressionModel from a given checkpoint path or dora sig.
This method is a convenient endpoint to load a CompressionModel to use in other solvers.
Args:
checkpoint_path (Path or str): Path to checkpoint or dora sig from where the checkpoint is resolved.
This also supports pre-trained models by using a path of the form //pretrained/NAME.
See `model_from_pretrained` for a list of supported pretrained models.
use_ema (bool): Use EMA variant of the model instead of the actual model.
device (torch.device or str): Device on which the model is loaded.
"""
checkpoint_path = str(checkpoint_path)
if checkpoint_path.startswith('//pretrained/'):
name = checkpoint_path.split('/', 3)[-1]
return models.CompressionModel.get_pretrained(name, device)
logger = logging.getLogger(__name__)
logger.info(f"Loading compression model from checkpoint: {checkpoint_path}")
_checkpoint_path = checkpoint.resolve_checkpoint_path(checkpoint_path, use_fsdp=False)
assert _checkpoint_path is not None, f"Could not resolve compression model checkpoint path: {checkpoint_path}"
state = checkpoint.load_checkpoint(_checkpoint_path)
assert state is not None and 'xp.cfg' in state, f"Could not load compression model from ckpt: {checkpoint_path}"
cfg = state['xp.cfg']
cfg.device = device
compression_model = models.builders.get_compression_model(cfg).to(device)
assert compression_model.sample_rate == cfg.sample_rate, "Compression model sample rate should match"
assert 'best_state' in state and state['best_state'] != {}
assert 'exported' not in state, "When loading an exported checkpoint, use the //pretrained/ prefix."
compression_model.load_state_dict(state['best_state']['model'])
compression_model.eval()
logger.info("Compression model loaded!")
return compression_model
@staticmethod
def wrapped_model_from_checkpoint(cfg: omegaconf.DictConfig,
checkpoint_path: tp.Union[Path, str],
device: tp.Union[torch.device, str] = 'cpu') -> models.CompressionModel:
"""Instantiate a wrapped CompressionModel from a given checkpoint path or dora sig.
Args:
cfg (omegaconf.DictConfig): Configuration to read from for wrapped mode.
checkpoint_path (Path or str): Path to checkpoint or dora sig from where the checkpoint is resolved.
use_ema (bool): Use EMA variant of the model instead of the actual model.
device (torch.device or str): Device on which the model is loaded.
"""
compression_model = CompressionSolver.model_from_checkpoint(checkpoint_path, device)
compression_model = models.builders.get_wrapped_compression_model(compression_model, cfg)
return compression_model
def evaluate_audio_reconstruction(y_pred: torch.Tensor, y: torch.Tensor, cfg: omegaconf.DictConfig) -> dict:
"""Audio reconstruction evaluation method that can be conveniently pickled."""
metrics = {}
if cfg.evaluate.metrics.visqol:
visqol = builders.get_visqol(cfg.metrics.visqol)
metrics['visqol'] = visqol(y_pred, y, cfg.sample_rate)
sisnr = builders.get_loss('sisnr', cfg)
metrics['sisnr'] = sisnr(y_pred, y)
return metrics
|