File size: 2,311 Bytes
			
			| 9fd1204 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | import os
from typing import List, Union
import numpy as np
import wandb
from diffusers.utils import export_to_video
from diffusers.utils.hub_utils import load_or_create_model_card, populate_model_card
from PIL import Image
def save_model_card(
    args,
    repo_id: str,
    videos: Union[List[str], Union[List[Image.Image], List[np.ndarray]]],
    validation_prompts: List[str],
    fps: int = 30,
) -> None:
    widget_dict = []
    output_dir = str(args.output_dir)
    if videos is not None and len(videos) > 0:
        for i, (video, validation_prompt) in enumerate(zip(videos, validation_prompts)):
            if not isinstance(video, str):
                export_to_video(video, os.path.join(output_dir, f"final_video_{i}.mp4"), fps=fps)
            widget_dict.append(
                {
                    "text": validation_prompt if validation_prompt else " ",
                    "output": {"url": video if isinstance(video, str) else f"final_video_{i}.mp4"},
                }
            )
    model_description = f"""
# LoRA Finetune
<Gallery />
## Model description
This is a lora finetune of model: `{args.pretrained_model_name_or_path}`.
The model was trained using [`finetrainers`](https://github.com/a-r-r-o-w/finetrainers).
## Download model
[Download LoRA]({repo_id}/tree/main) in the Files & Versions tab.
## Usage
Requires the [🧨 Diffusers library](https://github.com/huggingface/diffusers) installed.
```py
TODO
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters) on loading LoRAs in diffusers.
"""
    if wandb.run.url:
        model_description += f"""
Find out the wandb run URL and training configurations [here]({wandb.run.url}).
"""
    model_card = load_or_create_model_card(
        repo_id_or_path=repo_id,
        from_training=True,
        base_model=args.pretrained_model_name_or_path,
        model_description=model_description,
        widget=widget_dict,
    )
    tags = [
        "text-to-video",
        "diffusers-training",
        "diffusers",
        "lora",
        "template:sd-lora",
    ]
    model_card = populate_model_card(model_card, tags=tags)
    model_card.save(os.path.join(args.output_dir, "README.md"))
 | 
