Spaces:
Sleeping
Sleeping
File size: 2,077 Bytes
4de746d 8205099 4de746d 331d433 4de746d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import os
import gradio as gr
from langchain_core.pydantic_v1 import BaseModel, Field
from langchain.prompts import HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.output_parsers import PydanticOutputParser
from langchain_openai import ChatOpenAI
# with open('openai_api_key.txt') as f:
# api_key = f.read()
# os.environ['OPENAI_API_KEY'] = api_key
chat = ChatOpenAI()
# Define the Pydantic Model
class TextTranslator(BaseModel):
output: str = Field(description="Python string containing the output text translated in the desired language")
output_parser = PydanticOutputParser(pydantic_object=TextTranslator)
format_instructions = output_parser.get_format_instructions()
def text_translator(input_text : str, language : str) -> str:
human_template = """Enter the text that you want to translate:
{input_text}, and enter the language that you want it to translate to {language}. {format_instructions}"""
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([human_message_prompt])
prompt = chat_prompt.format_prompt(input_text = input_text, language = language, format_instructions = format_instructions)
messages = prompt.to_messages()
response = chat(messages = messages)
output = output_parser.parse(response.content)
output_text = output.output
return output_text
# Interface
with gr.Blocks() as demo:
gr.HTML("<h1 align = 'center'> Text Translator </h1>")
gr.HTML("<h4 align = 'center'> Translate to any language </h4>")
inputs = [gr.Textbox(label = "Enter the text that you want to translate"), gr.Textbox(label = "Enter the language that you want it to translate to", placeholder = "Example : Hindi,French,Bengali,etc")]
generate_btn = gr.Button(value = 'Generate')
outputs = [gr.Textbox(label = "Translated text")]
generate_btn.click(fn = text_translator, inputs= inputs, outputs = outputs)
if __name__ == '__main__':
demo.launch() |