File size: 2,547 Bytes
5d0dd22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

import streamlit as st
import requests

st.title("SuperKart Sales Forecasting App") #Complete the code to define the title of the app.

# Input fields for product and store data
Product_Weight = st.number_input("Product Weight", min_value=0.0, value=12.66)
Product_Sugar_Content = st.selectbox("Product Sugar Content", ["Low Sugar", "Regular", "No Sugar"])
Product_Allocated_Area = st.number_input("Product Allocated Area (sq. ft)", min_value=0.0, value=50.0) #Complete the code to define the UI element for Product_Allocated_Area
Product_MRP = st.number_input("Product MRP (₹)", min_value=0.0, value=100.0) #Complete the code to define the UI element for Product_MRP
Store_Size = st.selectbox("Store Size", ["Small", "Medium", "Large"]) #Complete the code to define the UI element for Store_Size
Store_Location_City_Type = st.selectbox("Store Location City Type", ["Tier 1", "Tier 2", "Tier 3"]) #Complete the code to define the UI element for Store_Location_City_Type
Store_Type = st.selectbox("Store Type", ["Grocery Store", "Supermarket Type1", "Supermarket Type2", "Supermarket Type3"]) #Complete the code to define the UI element for Store_Type
Product_Id_char = st.text_input("Product ID Character", "FDX01") #Complete the code to define the UI element for Product_Id_char
Store_Age_Years = st.number_input("Store Age (Years)", min_value=0, value=5) #Complete the code to define the UI element for Store_Age_Years
Product_Type_Category = st.selectbox("Product Type Category", ["Dairy", "Beverages", "Staples", "Snacks", "Household"]) #Complete the code to define the UI element for Product_Type_Category

product_data = {
    "Product_Weight": Product_Weight,
    "Product_Sugar_Content": Product_Sugar_Content,
    "Product_Allocated_Area": Product_Allocated_Area,
    "Product_MRP": Product_MRP,
    "Store_Size": Store_Size,
    "Store_Location_City_Type": Store_Location_City_Type,
    "Store_Type": Store_Type,
    "Product_Id_char": Product_Id_char,
    "Store_Age_Years": Store_Age_Years,
    "Product_Type_Category": Product_Type_Category
}

if st.button("Predict", type='primary'):
    response = requests.post("https://javo20-superkart-sales-forecast.hf.space/v1/predict", json=product_data)    # Complete the code to enter user name and space name to correctly define the endpoint
    if response.status_code == 200:
        result = response.json()
        predicted_sales = result["Sales"]
        st.write(f"Predicted Product Store Sales Total: ₹{predicted_sales:.2f}")
    else:
        st.error("Error in API request")