File size: 11,085 Bytes
b276dbe 159fe5e b276dbe 2d6d126 b276dbe f45ad41 9e91c10 b276dbe 2d6d126 cf45911 2d6d126 cf45911 2d6d126 cf45911 2d6d126 cf45911 2d6d126 cf45911 2d6d126 159fe5e 6d5eed2 cf45911 2d6d126 159fe5e 2d6d126 159fe5e 2d6d126 159fe5e cf45911 2d6d126 cf45911 b276dbe 2d6d126 b276dbe 9e91c10 b276dbe 1c1d54b b276dbe cf45911 b276dbe cf45911 b276dbe cf45911 b276dbe cf45911 b276dbe 9e91c10 b276dbe 1c1d54b b276dbe 9f87bf2 b276dbe 9e91c10 b276dbe 9e91c10 b276dbe 2d6d126 b276dbe 2d6d126 b276dbe 159fe5e 2d6d126 b276dbe 2d6d126 e12f791 2d6d126 842db18 2d6d126 b276dbe b893da2 e12f791 842db18 e12f791 2d6d126 842db18 2d6d126 9e91c10 2d6d126 9e91c10 159fe5e 2d6d126 9e91c10 2d6d126 9e91c10 2d6d126 9e91c10 2d6d126 9e91c10 b276dbe 2d6d126 b276dbe 1c1d54b b276dbe 159fe5e b276dbe 2d6d126 159fe5e b276dbe 2d6d126 159fe5e 2d6d126 b276dbe d5a9a0d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import streamlit as st
import datetime
import pickle
import numpy as np
import rdflib
import torch
import os
import requests
from rdflib import Graph as RDFGraph, Namespace
from sentence_transformers import SentenceTransformer
from dotenv import load_dotenv
# === CONFIGURATION ===
load_dotenv()
ENDPOINT_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-Instruct-v0.3"
HF_API_TOKEN = os.getenv("HF_API_TOKEN")
EMBEDDING_MODEL = "intfloat/multilingual-e5-base"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
EX = Namespace("http://example.org/lang/")
# === STREAMLIT UI CONFIG ===
st.set_page_config(
page_title="Language Atlas: South American Indigenous Languages",
page_icon="๐",
layout="wide",
initial_sidebar_state="expanded",
menu_items={
'About': "## AI-powered analysis of endangered indigenous languages\n"
"Developed by Departamento Acadรฉmico de Humanidades"
}
)
# === CUSTOM CSS ===
st.markdown("""
<style>
.header {
color: #2c3e50;
border-bottom: 2px solid #4f46e5;
padding-bottom: 0.5rem;
margin-bottom: 1.5rem;
}
.feature-card {
background-color: #f8fafc;
border-radius: 8px;
padding: 1rem;
margin: 0.5rem 0;
border-left: 3px solid #4f46e5;
}
.response-card {
background-color: #fdfdfd;
color: #1f2937;
border-radius: 8px;
padding: 1.5rem;
box-shadow: 0 2px 6px rgba(0,0,0,0.08);
margin: 1rem 0;
font-size: 1rem;
line-height: 1.5;
}
.language-card {
background-color: #f9fafb;
border-radius: 8px;
padding: 1rem;
margin: 0.5rem 0;
border: 1px solid #e5e7eb;
}
.sidebar-section {
margin-bottom: 1.5rem;
}
.sidebar-title {
font-weight: 600;
color: #4f46e5;
}
.suggested-question {
padding: 0.5rem;
margin: 0.25rem 0;
border-radius: 4px;
cursor: pointer;
transition: all 0.2s;
}
.suggested-question:hover {
background-color: #f1f5f9;
}
.metric-badge {
display: inline-block;
background-color: #e8f4fc;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.85rem;
margin-right: 0.5rem;
}
.tech-badge {
background-color: #ecfdf5;
color: #065f46;
padding: 0.25rem 0.5rem;
border-radius: 4px;
font-size: 0.75rem;
font-weight: 500;
}
</style>
""", unsafe_allow_html=True)
# === CORE FUNCTIONS ===
@st.cache_resource(show_spinner="Loading AI models and knowledge graphs...")
def load_all_components():
embedder = SentenceTransformer(EMBEDDING_MODEL, device=DEVICE)
methods = {}
for label, suffix, ttl, matrix_path in [
("InfoMatch", "_hybrid", "grafo_ttl_hibrido.ttl", "embed_matrix_hybrid.npy"),
("LinkGraph", "_hybrid_graphsage", "grafo_ttl_hibrido_graphsage.ttl", "embed_matrix_hybrid_graphsage.npy")
]:
with open(f"id_map{suffix}.pkl", "rb") as f:
id_map = pickle.load(f)
with open(f"grafo_embed{suffix}.pickle", "rb") as f:
G = pickle.load(f)
matrix = np.load(matrix_path)
rdf = RDFGraph()
rdf.parse(ttl, format="ttl")
methods[label] = (matrix, id_map, G, rdf)
return methods, embedder
def get_top_k(matrix, id_map, query, k, embedder):
vec = embedder.encode(f"query: {query}", convert_to_tensor=True, device=DEVICE)
vec = vec.cpu().numpy().astype("float32")
sims = np.dot(matrix, vec) / (np.linalg.norm(matrix, axis=1) * np.linalg.norm(vec) + 1e-10)
top_k_idx = np.argsort(sims)[-k:][::-1]
return [id_map[i] for i in top_k_idx]
def get_context(G, lang_id):
node = G.nodes.get(lang_id, {})
lines = [f"**Language:** {node.get('label', lang_id)}"]
if node.get("wikipedia_summary"):
lines.append(f"**Wikipedia:** {node['wikipedia_summary']}")
if node.get("wikidata_description"):
lines.append(f"**Wikidata:** {node['wikidata_description']}")
if node.get("wikidata_countries"):
lines.append(f"**Countries:** {node['wikidata_countries']}")
return "\n\n".join(lines)
def query_rdf(rdf, lang_id):
q = f"""
PREFIX ex: <http://example.org/lang/>
SELECT ?property ?value WHERE {{ ex:{lang_id} ?property ?value }}
"""
try:
return [(str(row[0]).split("/")[-1], str(row[1])) for row in rdf.query(q)]
except Exception as e:
return [("error", str(e))]
def generate_response(matrix, id_map, G, rdf, user_question, k, embedder):
ids = get_top_k(matrix, id_map, user_question, k, embedder)
context = [get_context(G, i) for i in ids]
rdf_facts = []
for i in ids:
rdf_facts.extend([f"{p}: {v}" for p, v in query_rdf(rdf, i)])
prompt = f"""<s>[INST]
You are an expert in South American indigenous languages.
Use strictly and only the information below to answer the user question in **English**.
- Do not infer or assume facts that are not explicitly stated.
- If the answer is unknown or insufficient, say \"I cannot answer with the available data.\"
- Limit your answer to 100 words.
### CONTEXT:
{chr(10).join(context)}
### RDF RELATIONS:
{chr(10).join(rdf_facts)}
### QUESTION:
{user_question}
Answer:
[/INST]"""
try:
res = requests.post(
ENDPOINT_URL,
headers={"Authorization": f"Bearer {HF_API_TOKEN}", "Content-Type": "application/json"},
json={"inputs": prompt}, timeout=60
)
out = res.json()
if isinstance(out, list) and "generated_text" in out[0]:
return out[0]["generated_text"].replace(prompt.strip(), "").strip(), ids, context, rdf_facts
return str(out), ids, context, rdf_facts
except Exception as e:
return str(e), ids, context, rdf_facts
# === MAIN APP ===
def main():
methods, embedder = load_all_components()
st.markdown("""
<div class="header">
<h1>๐ Language Atlas: South American Indigenous Languages</h1>
</div>
""", unsafe_allow_html=True)
with st.expander("๐ **Overview**", expanded=True):
st.markdown("""
This app provides **AI-powered analysis** of endangered indigenous languages in South America,
integrating knowledge graphs from **Glottolog, Wikipedia, and Wikidata**.
\n\n*This is version 1 and currently English-only. Spanish version coming soon!*
""")
with st.sidebar:
st.markdown("### ๐ Pontificia Universidad Catรณlica del Perรบ")
st.markdown("""
- <span class="tech-badge">Departamento de Humanidades</span>
- <span class="tech-badge">jveraz@pucp.edu.pe</span>
- <span class="tech-badge">Suggestions? Contact us</span>
""", unsafe_allow_html=True)
st.markdown("---")
st.markdown("### ๐ Quick Start")
st.markdown("""
1. **Type a question** in the input box
2. **Click 'Analyze'** to compare methods
3. **Explore results** with expandable details
""")
st.markdown("---")
st.markdown("### ๐ Example Queries")
questions = [
"What languages are endangered in Brazil?",
"What languages are spoken in Perรบ?",
"Which languages are related to Quechua?",
"Where is Mapudungun spoken?"
]
for q in questions:
if st.markdown(f"<div class='suggested-question'>{q}</div>", unsafe_allow_html=True):
st.session_state.query = q
st.markdown("---")
st.markdown("### โ๏ธ Technical Details")
st.markdown("""
- <span class="tech-badge">Embeddings</span> Node2Vec vs. GraphSAGE
- <span class="tech-badge">Language Model</span> Mistral-7B-Instruct
- <span class="tech-badge">Knowledge Graph</span> RDF-based integration
""", unsafe_allow_html=True)
st.markdown("---")
st.markdown("### ๐ Data Sources")
st.markdown("""
- **Glottolog** (Language classification)
- **Wikipedia** (Textual summaries)
- **Wikidata** (Structured facts)
""")
st.markdown("---")
st.markdown("### ๐ Analysis Parameters")
k = st.slider("Number of languages to analyze", 1, 10, 3)
st.markdown("---")
st.markdown("### ๐ง Advanced Options")
show_ctx = st.checkbox("Show context information", False)
show_rdf = st.checkbox("Show structured facts", False)
st.markdown("### ๐ Ask About Indigenous Languages")
query = st.text_input(
"Enter your question:",
value=st.session_state.get("query", ""),
label_visibility="collapsed",
placeholder="e.g. What languages are spoken in Peru?"
)
if st.button("Analyze", type="primary", use_container_width=True):
if not query:
st.warning("Please enter a question")
return
col1, col2 = st.columns(2)
for col, (label, method) in zip([col1, col2], methods.items()):
with col:
st.markdown(f"#### {label} Method")
st.caption({
"InfoMatch": "Node2Vec embeddings combining text and graph structure",
"LinkGraph": "GraphSAGE embeddings capturing network patterns"
}[label])
start = datetime.datetime.now()
response, lang_ids, context, rdf_data = generate_response(*method, query, k, embedder)
duration = (datetime.datetime.now() - start).total_seconds()
st.markdown(f"""
<div class="response-card">
{response}
<div style="margin-top: 1rem;">
<span class="metric-badge">โฑ๏ธ {duration:.2f}s</span>
<span class="metric-badge">๐ {len(lang_ids)} languages</span>
</div>
</div>
""", unsafe_allow_html=True)
if show_ctx:
with st.expander(f"๐ Context from {len(lang_ids)} languages"):
for lang_id, ctx in zip(lang_ids, context):
st.markdown(f"<div class='language-card'>{ctx}</div>", unsafe_allow_html=True)
if show_rdf:
with st.expander("๐ Structured facts (RDF)"):
st.code("\n".join(rdf_data))
st.markdown("---")
st.markdown("""
<div style="font-size: 0.8rem; color: #64748b; text-align: center;">
<b>๐ Note:</b> This tool is designed for researchers, linguists, and cultural preservationists.
For best results, use specific questions about languages, families, or regions.
</div>
""", unsafe_allow_html=True)
if __name__ == "__main__":
main()
|