Spaces:
Running
Running
File size: 6,022 Bytes
ba907cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
"""
Session management utilities.
This module provides utilities for session data persistence and management.
"""
import os
import pickle
import traceback
from typing import Dict, Any, Tuple, Optional, List
from configs.config import Config, ErrorMessages
def create_session_file_path(session_id: str) -> str:
"""
Create the file path for a session pickle file.
Args:
session_id: Session identifier
Returns:
File path for the session data
"""
return f"{Config.UPLOAD_DIR}/{session_id}_session.pkl"
def create_upload_file_path(session_id: str, filename: str) -> str:
"""
Create the file path for an uploaded file.
Args:
session_id: Session identifier
filename: Original filename
Returns:
File path for the uploaded file
"""
return f"{Config.UPLOAD_DIR}/{session_id}_{filename}"
def prepare_pickle_safe_data(session_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Prepare session data for pickling by removing non-serializable objects.
Args:
session_data: Full session data
Returns:
Pickle-safe session data
"""
return {
"file_path": session_data.get("file_path"),
"file_name": session_data.get("file_name"),
"chunks": session_data.get("chunks"), # Chunks with metadata (list of dicts)
"chat_history": session_data.get("chat_history", [])
# FAISS index, embedding model, and LLM model are not pickled
}
def save_session_to_file(session_id: str, session_data: Dict[str, Any]) -> bool:
"""
Save session data to pickle file.
Args:
session_id: Session identifier
session_data: Session data to save
Returns:
True if successful, False otherwise
"""
try:
pickle_safe_data = prepare_pickle_safe_data(session_data)
file_path = create_session_file_path(session_id)
with open(file_path, "wb") as f:
pickle.dump(pickle_safe_data, f)
return True
except Exception as e:
print(f"Error saving session {session_id}: {str(e)}")
return False
def load_session_from_file(session_id: str) -> Tuple[Optional[Dict[str, Any]], bool]:
"""
Load session data from pickle file.
Args:
session_id: Session identifier
Returns:
Tuple of (session_data, success)
"""
try:
file_path = create_session_file_path(session_id)
if not os.path.exists(file_path):
return None, False
with open(file_path, "rb") as f:
data = pickle.load(f)
return data, True
except Exception as e:
print(f"Error loading session {session_id}: {str(e)}")
return None, False
def reconstruct_session_objects(
session_data: Dict[str, Any],
model_name: str,
embedding_model
) -> Dict[str, Any]:
"""
Reconstruct non-serializable objects in session data.
Args:
session_data: Basic session data from pickle
model_name: LLM model name
embedding_model: SentenceTransformer instance
Returns:
Complete session data with reconstructed objects
"""
# Import here to avoid circular imports
from sentence_transformers import SentenceTransformer
from langchain_groq import ChatGroq
# Create LLM model
llm = ChatGroq(
model=model_name,
api_key=os.getenv("GROQ_API_KEY"),
temperature=Config.LLM_TEMPERATURE,
max_tokens=Config.MAX_TOKENS
)
# Reconstruct embeddings and FAISS index
if session_data.get("chunks"):
# Import here to avoid circular imports
from utils.text_processing import create_embeddings
from utils.faiss_utils import build_faiss_index
embeddings, _ = create_embeddings(session_data["chunks"], embedding_model)
faiss_index = build_faiss_index(embeddings)
else:
embeddings, faiss_index = None, None
return {
**session_data,
"model": embedding_model,
"index": faiss_index,
"llm": llm
}
def cleanup_session_files(session_id: str) -> bool:
"""
Clean up all files associated with a session.
Args:
session_id: Session identifier
Returns:
True if successful, False otherwise
"""
try:
session_file = create_session_file_path(session_id)
# Load session data to get file path
if os.path.exists(session_file):
try:
with open(session_file, "rb") as f:
data = pickle.load(f)
# Delete PDF file if it exists
pdf_path = data.get("file_path")
if pdf_path and os.path.exists(pdf_path):
os.remove(pdf_path)
except Exception as e:
print(f"Error reading session file for cleanup: {e}")
# Remove session file
os.remove(session_file)
return True
except Exception as e:
print(f"Error cleaning up session {session_id}: {str(e)}")
return False
def validate_session_data(session_data: Dict[str, Any]) -> Tuple[bool, List[str]]:
"""
Validate session data integrity.
Args:
session_data: Session data to validate
Returns:
Tuple of (is_valid, missing_keys)
"""
required_keys = ["index", "chunks", "model", "llm"]
missing_keys = [key for key in required_keys if key not in session_data]
return len(missing_keys) == 0, missing_keys
def session_exists(session_id: str) -> bool:
"""
Check if a session exists.
Args:
session_id: Session identifier
Returns:
True if session exists, False otherwise
"""
session_file = create_session_file_path(session_id)
return os.path.exists(session_file)
|