File size: 10,720 Bytes
6fca3f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import gradio as gr
import torch
from diffusers import StableDiffusionPipeline
from PIL import Image
import numpy as np
import os
from huggingface_hub import hf_hub_download
import warnings
from transformers import CLIPProcessor, CLIPModel
warnings.filterwarnings("ignore")

# Check if CUDA is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")

# Load CLIP model for semantic guidance
print("Loading CLIP model for semantic guidance...")
clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32").to(device)
clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")

# Dictionary of available concepts
CONCEPTS = {
    "canna-lily-flowers102": {
        "repo_id": "sd-concepts-library/canna-lily-flowers102",
        "type": "object",
        "description": "Canna lily flower style"
    },
    "samurai-jack": {
        "repo_id": "sd-concepts-library/samurai-jack",
        "type": "style",
        "description": "Samurai Jack animation style"
    },
    "babies-poster": {
        "repo_id": "sd-concepts-library/babies-poster",
        "type": "style",
        "description": "Babies poster art style"
    },
    "animal-toy": {
        "repo_id": "sd-concepts-library/animal-toy",
        "type": "object",
        "description": "Animal toy style"
    },
    "sword-lily-flowers102": {
        "repo_id": "sd-concepts-library/sword-lily-flowers102",
        "type": "object",
        "description": "Sword lily flower style"
    }
}

def car_loss(image):
    """Custom loss function that encourages the presence of cars in the image"""
    # Convert PIL image to tensor if needed
    if isinstance(image, Image.Image):
        image = np.array(image)
        image = torch.tensor(image, device=device)
    
    # Process image for CLIP
    with torch.no_grad():
        # Convert to PIL for CLIP processing
        pil_image = Image.fromarray(image.cpu().numpy().astype(np.uint8))
        
        # Get CLIP features for the image
        inputs = clip_processor(
            text=["a photo of a car", "a photo without cars"],
            images=pil_image,
            return_tensors="pt",
            padding=True
        ).to(device)
        
        # Get similarity scores
        outputs = clip_model(**inputs)
        logits_per_image = outputs.logits_per_image
        
        # Higher score for the first text (with cars) is better
        car_score = logits_per_image[0][0]
        no_car_score = logits_per_image[0][1]
        
        # We want to maximize car_score and minimize no_car_score
        loss = -(car_score - no_car_score)
        
    return loss

def generate_image(pipe, prompt, seed, guidance_scale=7.5, num_inference_steps=30, use_car_guidance=False):
    """Generate an image with optional car guidance"""
    generator = torch.Generator(device).manual_seed(seed)
    custom_loss = car_loss if use_car_guidance else None
    
    if custom_loss:
        try:
            # Start with a standard generation
            init_images = pipe(
                prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps // 2,
                generator=generator
            ).images
            
            init_image = init_images[0]
            
            # Refine using car guidance
            from diffusers import StableDiffusionImg2ImgPipeline
            
            img2img_pipe = StableDiffusionImg2ImgPipeline(
                vae=pipe.vae,
                text_encoder=pipe.text_encoder,
                tokenizer=pipe.tokenizer,
                unet=pipe.unet,
                scheduler=pipe.scheduler,
                safety_checker=None,
                feature_extractor=None,
            ).to(device)
            
            strength = 0.75
            current_image = init_image
            
            for i in range(5):
                current_loss = custom_loss(current_image)
                
                refined_images = img2img_pipe(
                    prompt=prompt + ", with beautiful cars",
                    image=current_image,
                    strength=strength,
                    guidance_scale=guidance_scale,
                    generator=generator,
                ).images
                
                current_image = refined_images[0]
                strength *= 0.8
            
            return current_image
            
        except Exception as e:
            print(f"Error in car-guided generation: {e}")
            return pipe(
                prompt,
                guidance_scale=guidance_scale,
                num_inference_steps=num_inference_steps,
                generator=generator
            ).images[0]
    else:
        return pipe(
            prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator
        ).images[0]

# Cache for loaded models and concepts
loaded_models = {}

def get_model_with_concept(concept_name):
    """Get or load a model with the specified concept"""
    if concept_name not in loaded_models:
        concept_info = CONCEPTS[concept_name]
        
        # Download concept embedding
        concept_path = f"concepts/{concept_name}.bin"
        os.makedirs("concepts", exist_ok=True)
        
        if not os.path.exists(concept_path):
            file = hf_hub_download(
                repo_id=concept_info["repo_id"],
                filename="learned_embeds.bin",
                repo_type="model"
            )
            import shutil
            shutil.copy(file, concept_path)
        
        # Load model and concept
        pipe = StableDiffusionPipeline.from_pretrained(
            "stabilityai/stable-diffusion-2",
            torch_dtype=torch.float32 if device == "cpu" else torch.float16,
            safety_checker=None
        ).to(device)
        
        pipe.load_textual_inversion(concept_path)
        loaded_models[concept_name] = pipe
    
    return loaded_models[concept_name]

def generate_images(concept_name, base_prompt, seed, use_car_guidance):
    """Generate images using the selected concept"""
    try:
        # Get model with concept
        pipe = get_model_with_concept(concept_name)
        
        # Construct prompt based on concept type
        if CONCEPTS[concept_name]["type"] == "object":
            prompt = f"A {base_prompt} with a <{concept_name}>"
        else:
            prompt = f"<{concept_name}> {base_prompt}"
        
        # Generate image
        image = generate_image(
            pipe=pipe,
            prompt=prompt,
            seed=int(seed),
            use_car_guidance=use_car_guidance
        )
        
        return image
    except Exception as e:
        raise gr.Error(f"Error generating image: {str(e)}")

# Create Gradio interface
with gr.Blocks(title="Stable Diffusion Style Explorer") as demo:
    gr.Markdown("""
    # Stable Diffusion Style Explorer
    
    Generate images using various concepts from the SD Concepts Library, with optional car guidance.
    
    ## How to use:
    1. Select a concept from the dropdown
    2. Enter a base prompt (or use the default)
    3. Set a seed for reproducibility
    4. Choose whether to use car guidance
    5. Click Generate!
    
    Check out the examples below to see different combinations of concepts and prompts!
    """)
    
    with gr.Row():
        with gr.Column():
            concept = gr.Dropdown(
                choices=list(CONCEPTS.keys()),
                value="samurai-jack",
                label="Select Concept"
            )
            
            prompt = gr.Textbox(
                value="A serene landscape with mountains and a lake at sunset",
                label="Base Prompt"
            )
            
            seed = gr.Number(
                value=42,
                label="Seed",
                precision=0
            )
            
            car_guidance = gr.Checkbox(
                value=False,
                label="Use Car Guidance"
            )
            
            generate_btn = gr.Button("Generate Image")
        
        with gr.Column():
            output_image = gr.Image(label="Generated Image")
            
    concept.change(
        fn=lambda x: gr.Markdown(f"Selected concept: {CONCEPTS[x]['description']} ({CONCEPTS[x]['type']})"),
        inputs=[concept],
        outputs=[gr.Markdown()]
    )
    
    generate_btn.click(
        fn=generate_images,
        inputs=[concept, prompt, seed, car_guidance],
        outputs=[output_image]
    )

    # Gallery of pre-generated examples
    gr.Markdown("### 🖼️ Pre-generated Examples")
    
    with gr.Row():
        # Samurai Jack examples
        with gr.Column():
            gr.Markdown("**Samurai Jack Style**")
            gr.Image("Assignment17/Assignment17/outputs/samurai-jack_normal.png", 
                    label="Without Car Guidance")
            gr.Image("Assignment17/Assignment17/outputs/samurai-jack_car.png", 
                    label="With Car Guidance")
    
    with gr.Row():
        # Canna Lily examples
        with gr.Column():
            gr.Markdown("**Canna Lily Object**")
            gr.Image("Assignment17/Assignment17/outputs/canna-lily-flowers102_normal.png", 
                    label="Without Car Guidance")
            gr.Image("Assignment17/Assignment17/outputs/canna-lily-flowers102_car.png", 
                    label="With Car Guidance")
    
    with gr.Row():
        # Babies Poster examples
        with gr.Column():
            gr.Markdown("**Babies Poster Style**")
            gr.Image("Assignment17/Assignment17/outputs/babies-poster_normal.png", 
                    label="Without Car Guidance")
            gr.Image("Assignment17/Assignment17/outputs/babies-poster_car.png", 
                    label="With Car Guidance")
    
    with gr.Row():
        # Animal Toy examples
        with gr.Column():
            gr.Markdown("**Animal Toy Object**")
            gr.Image("Assignment17/Assignment17/outputs/animal-toy_normal.png", 
                    label="Without Car Guidance")
            gr.Image("Assignment17/Assignment17/outputs/animal-toy_car.png", 
                    label="With Car Guidance")
    
    with gr.Row():
        # Sword Lily examples
        with gr.Column():
            gr.Markdown("**Sword Lily Object**")
            gr.Image("Assignment17/Assignment17/outputs/sword-lily-flowers102_normal.png", 
                    label="Without Car Guidance")
            gr.Image("Assignment17/Assignment17/outputs/sword-lily-flowers102_car.png", 
                    label="With Car Guidance")

demo.launch()